AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport

Yu CaoHaifeng Dong( )Shaotao PuXueji Zhang( )
Research Center for Bioengineering and Sensing TechnologyBeijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry & Biological EngineeringUniversity of Science & Technology BeijingBeijing100083China
Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2D) ultrathin SiC has received intense attention due to its broad band gap and resistance to large mechanical deformation and external chemical corrosion. However, the synthesis and application of ultrasmall 2D SiC quantum dots (QDs) has not been explored. Herein, we synthesize a type of monolayered 2D SiC QDs with advanced photoluminescence (PL) properties via a facile hydrothermal route. Their average size and thickness can be easily adjusted by altering the reaction time. The ultrasmall 2D SiC QDs exhibit a long fluorescence lifetime of 2.59 μs due to efficient quantum confinement. The applications of SiC QDs are demonstrated through labeling A549, HeLa, and NHDF cells and delivering agents for intracellular low-abundant microRNA (miRNA) detection. This advance in preparing photoluminescent SiC QDs is of great significance for broadening their potential in biomedical and optical applications.

Electronic Supplementary Material

Download File(s)
12274_2018_1990_MOESM1_ESM.pdf (2 MB)

References

1

Chen, Y. J.; Wu, Y. K.; Sun, B. B.; Liu, S. J.; Liu, H. Y. Two-dimensional nanomaterials for cancer nanotheranostics. Small 2017, 13, 1603446.

2

Kong, X. K.; Liu, Q. C.; Zhang, C. L.; Peng, Z. M.; Chen, Q. W. Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 2017, 46, 2127-2157.

3

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225-6331.

4

Mei, J.; Liao, T.; Kou, L. Z.; Sun, Z. Q. Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv. Mater. 2017, 29, 1700176.

5

Jin, Z.; McNicholas, T. P.; Shih, C. J.; Wang, Q. H.; Paulus, G. L. C.; Hilmer, A. J.; Shimizu, S.; Strano, M. S. Click chemistry on solution-dispersed graphene and monolayer CVD graphene. Chem. Mater. 2011, 23, 3362-3370.

6

Liu, P. W.; Jin, Z.; Katsukis, G.; Drahushuk, L. W.; Shimizu, S.; Shih, C. J.; Wetzel, E. D.; Taggart-Scarff, J. K.; Qing, B.; Van Vliet, K. J. et al. Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit. Science 2016, 353, 364-367.

7

Ma, L. B.; Hu, Y.; Zhu, G. Y.; Chen, R. P.; Chen, T.; Lu, H. L.; Wang, Y. R.; Liang, J.; Liu, H. X.; Yan, C. Z. et al. In situ thermal synthesis of inlaid ultrathin MoS2/graphene nanosheets as electrocatalysts for the hydrogen evolution reaction. Chem. Mater. 2016, 28, 5733-5742.

8

Jin, Z.; Lu, W.; O'Neill, K. J.; Parilla, P. A.; Simpson, L. J.; Kittrell, C.; Tour, J. M. Nano-engineered spacing in graphene sheets for hydrogen storage. Chem. Mater. 2011, 23, 923-925.

9

Jin, Z.; Sun, W.; Ke, Y. G.; Shih, C. J.; Paulus, G. L. C.; Wang, Q. H.; Mu, B.; Yin, P.; Strano, M. S. Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning. Nat. Commun. 2013, 4, 1663.

10

Dai, C.; Lin, H.; Xu, G.; Liu, Z.; Wu, R.; Chen, Y. Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem. Mater. 2017, 29, 8637-8652.

11

Abergel, D. S. L.; Apalkov, V.; Berashevich, J.; Ziegler, K.; Chakraborty, T. Properties of graphene: A theoretical perspective. Adv. Phys. 2010, 59, 261-482.

12

Avouris, P. Graphene: Electronic and photonic properties and devices. Nano Lett. 2010, 10, 4285-4294.

13

Jin, Z.; Yao, J.; Kittrell, C.; Tour, J. M. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 2011, 5, 4112-4117.

14

Shih, C. J.; Wang, Q. H.; Jin, Z.; Paulus, G. L. C.; Blankschtein, D.; Jarillo-Herrero, P.; Strano, M. S. Disorder imposed limits of mono- and bilayer graphene electronic modification using covalent chemistry. Nano Lett. 2013, 13, 809-817.

15

Chen, Y. C.; de Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 2013, 7, 6123-6128.

16

Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; Nevius, M. S.; Wang, F.; Shepperd, K.; Palmer, J.; Bertran, F.; Le Fèvre, P.; Kunc, J. et al. A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene. Nat. Phys. 2013, 9, 49-54.

17

Lui, C. H.; Li, Z. Q.; Mak, K. F.; Cappelluti, E.; Heinz, T. F. Observation of an electrically tunable band gap in trilayer graphene. Nat. Phys. 2011, 7, 944-947.

18

Lei, W. Y.; Liu, G.; Zhang, J.; Liu, M. H. Black phosphorus nanostructures: Recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 2017, 46, 3492-3509.

19

Roldán, R.; Castellanos-Gomez, A.; Cappelluti, E.; Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys.: Condens. Matter 2015, 27, 313201.

20

Li, P. F.; Zhou, R. L.; Zeng, X. C. The search for the most stable structures of silicon-carbon monolayer compounds. Nanoscale 2014, 6, 11685-11691.

21

Yu, M.; Jayanthi, C. S.; Wu, S. Y. Theoretical predictions of a bucky-diamond SiC cluster. Nanotechnology 2012, 23, 235705.

22

Susi, T.; Skákalová, V.; Mittelberger, A.; Kotrusz, P.; Hulman, M.; Pennycook, T. J.; Mangler, C.; Kotakoski, J.; Meyer, J. C. Computational insights and the observation of SiC nanograin assembly: Towards 2D silicon carbide. Sci. Rep. 2017, 7, 4399.

23

Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R. T.; Ciraci, S. Monolayer honeycomb structures of group-Ⅳ elements and Ⅲ-Ⅴ binary compounds: First-principles calculations. Phys. Rev. B 2009, 80, 155453.

24

Shi, Z. M.; Zhang, Z. H.; Kutana, A.; Yakobson, B. I. Predicting two-dimensional silicon carbide monolayers. ACS Nano 2015, 9, 9802-9809.

25

Lin, S. S.; Zhang, S. J.; Li, X. Q.; Xu, W. L.; Pi, X. D.; Liu, X. Y.; Wang, F. C.; Wu, H. G.; Chen, H. S. Quasi-two-dimensional SiC and SiC2: Interaction of silicon and carbon at atomic thin lattice plane. J. Phys. Chem. C 2015, 119, 19772-19779.

26

Chabi, S.; Chang, H.; Xia, Y. D.; Zhu, Y. Q. From graphene to silicon carbide: Ultrathin silicon carbide flakes. Nanotechnology 2016, 27, 075602.

27

Lin, S. S. Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 2012, 116, 3951-3955.

28

Fan, J. Y.; Li, H. X.; Jiang, J.; So, L. K. Y.; Lam, Y. W.; Chu, P. K. 3C-SiC nanocrystals as fluorescent biological labels. Small 2008, 4, 1058-1062.

29

Wu, R. B.; Zhou, K.; Yue, C. Y.; Wei, J.; Pan, Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 2015, 72, 1-60.

30

Nakashima, S.; Harima, H. Raman investigation of SiC polytypes. Phys. Stat. Sol. A 1997, 162, 39-64.

31

Lin, S. H.; Chen, Z. M.; Li, L. B.; Yang, C. Effect of impurities on the Raman scattering of 6H-SiC crystals. Mater. Res. 2012, 15, 833-836.

32

Zhou, L. J.; Zhang, Y. F.; Wu, L. M. SiC2 siligraphene and nanotubes: Novel donor materials in excitonic solar cells. Nano Lett. 2013, 13, 5431-5436.

33

Kusunoki, I.; Igari, Y. XPS study of a SiC film produced on Si(100) by reaction with a C2H2 beam. Appl. Surf. Sci. 1992, 59, 95-104.

34

Belton, D. N.; Harris, S. J.; Schmieg, S. J.; Weiner, A. M.; Perry, T. A. In situ characterization of diamond nucleation and growth. Appl. Phys. Lett. 1989, 54, 416-417.

35

Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G. H. B.; Evmenenko, G.; Wu, S. E.; Chen, S. F.; Liu, C. P. et al. Graphene-silica composite thin films as transparent conductors. Nano Lett. 2007, 7, 1888-1892.

36

Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382-385.

37

Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, M. H. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 2010, 22, 734-738.

38

Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435-446.

39

Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.

40

Dai, W. H.; Dong, H. F.; Fugetsu, B.; Cao, Y.; Lu, H. T.; Ma, X. L.; Zhang, X. J. Tunable fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and multiphoton bioimaging. Small 2015, 11, 4158-4164.

41

Wu, P.; Yan, X. P. Doped quantum dots for chemo/biosensing and bioimaging. Chem. Soc. Rev. 2013, 42, 5489-5521.

42

Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743-4768.

Nano Research
Pages 4074-4081
Cite this article:
Cao Y, Dong H, Pu S, et al. Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport. Nano Research, 2018, 11(8): 4074-4081. https://doi.org/10.1007/s12274-018-1990-3

721

Views

41

Crossref

N/A

Web of Science

43

Scopus

4

CSCD

Altmetrics

Received: 21 November 2017
Revised: 31 December 2017
Accepted: 03 January 2018
Published: 29 January 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return