Graphical Abstract

The recent classification of curcumin (Cur) as a pan-assay interference compound (PAINS) and an invalid metabolic panaceas (IMPS) candidate demonstrated the controversial nature of Cur as a drug lead owing to its aggregation in aqueous phase and inherent instability in vivo. Here, we report a simple prodrug approach to generate nanoparticles of Curin situ that allow it to function reproducibly as an anticancer and an anti-inflammatory agent. Diphosphorylated curcumin (Cur-2p), a precursor of Cur and a substrate of alkaline phosphatase (ALP), exhibited drastically improved chemical stability and low aggregation in water. After conversion to curcumin around or inside cancer cells by ALP, Cur-2p selectively inhibited cancer cells that overexpressed ALP, but did not affect normal cells. Moreover, the intravitreal injection of Cur-2p resulted in excellent intraocular biocompatibility with no apparent damage to the morphology and visual function of retina, as shown by fundus imaging, optical coherence tomography (OCT), and histological observation. A rodent model of uveitis showed that Cur-2p significantly suppressed the inflammation response compared with Cur. As a rational approach to investigate and apply PAINS and IMPS candidates, this work presents a straightforward method to maximize the potential of drug leads and ultimately fulfil the promises and potential clinical benefits of PAINS and IMPS candidates.
Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646-674.
Hopkins, A. L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682-690.
Yang, Y.; Mu, J.; Xing, B. Photoactivated drug delivery and bioimaging. Wiley Interdiscip. Rev. : Nanomed. Nanobiotechnol. 2017, 9, doi: 10.1002/wnan.1408.
Sant, S.; Tao, S. L.; Fisher, O. Z.; Xu, Q. B.; Peppas, N. A.; Khademhosseini, A. Microfabrication technologies for oral drug delivery. Adv. Drug Deliver. Rev. 2012, 64, 496-507.
Abe, Y.; Hashimoto, S.; Horie, T. Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol. Res. 1999, 39, 41-47.
Aggarwal, B. B.; Harikumar, K. B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 2009, 41, 40-59.
Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Curcumin as a wound healing agent. Life Sci. 2014, 116, 1-7.
Bar-Sela, G.; Epelbaum, R.; Schaffer, M. Curcumin as an anti-cancer agent: Review of the gap between basic and clinical applications. Curr. Med. Chem. 2010, 17, 190-197.
Wilken, R.; Veena, M. S.; Wang, M. B.; Srivatsan, E. S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 2011, 10, 12.
Prasad, S.; Tyagi, A. K.; Aggarwal, B. B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice. Cancer Res. Treat. 2014, 46, 2-18.
Ahmed, S.; Anuntiyo, J.; Malemud, C. J.; Haqqi, T. M. Biological basis for the use of botanicals in osteoarthritis and rheumatoid arthritis: A review. Evid. -Based Complement Alternat Med. 2005, 2, 301-308.
Zhou, H. Y.; Beevers, C. S.; Huang, S. L. The targets of curcumin. Curr. Drug Targets 2011, 12, 332-347.
Ahsan, H.; Parveen, N.; Khan, N. U.; Hadi, S. M. Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chem. -Biol. Interact. 1999, 121, 161-175.
Lim, G. P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S. A.; Cole, G. M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 2001, 21, 8370-8377.
Olivera, A.; Moore, T. W.; Hu, F.; Brown, A. P.; Sun, A. M.; Liotta, D. C.; Snyder, J. P.; Yoon, Y.; Shim, H.; Marcus, A. I. et al. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3, 5-bis(2-pyridinylmethylidene)-4-piperidone (EF31): Anti-inflammatory and anti-cancer properties. Int. Immunopharmacol. 2012, 12, 368-377.
Rahman, I.; Adcock, I. M. Oxidative stress and redox regulation of lung inflammation in COPD. Eur. Respir. J. 2006, 28, 219-242.
Xie, L.; Li, X. K.; Funeshima-Fuji, N.; Kimura, H.; Matsumoto, Y.; Isaka, Y.; Takahara, S. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int. Immunopharmacol. 2009, 9, 575-581.
Zhuang, X. Y.; Xiang, X. Y.; Grizzle, W.; Sun, D. M.; Zhang, S. Q.; Axtell, R. C.; Ju, S. W.; Mu, J. Y.; Zhang, L. F.; Steinman, L. et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 2011, 19, 1769-1779.
Wang, L.; Feng, J. F.; Chen, X. N.; Guo, W.; Du, Y. W.; Wang, Y. Y.; Zang, W. Q.; Zhang, S. J.; Zhao, G. Q. Myricetin enhance chemosensitivity of 5-fluorouracil on esophageal carcinoma in vitro and in vivo. Cancer Cell Int. 2014, 14, 71.
Maher, P.; Akaishi, T.; Schubert, D.; Abe, K. A pyrazole derivative of curcumin enhances memory. Neurobiol. Aging 2010, 31, 706-709.
Zhang, X. L.; Tian, Y. L.; Li, Z.; Tian, X. Y.; Sun, H. B.; Liu, H.; Moore, A.; Ran, C. Z. Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer's disease. J. Am. Chem. Soc. 2013, 135, 16397-16409.
Baell, J.; Walters, M. A. Chemistry: Chemical con artists foil drug discovery. Nature 2014, 513, 481-483.
Bisson, J.; McAlpine, J. B.; Friesen, J. B.; Chen, S. N.; Graham, J.; Pauli, G. F. Can invalid bioactives undermine natural product-based drug discovery? J. Med. Chem. 2016, 59, 1671-1690.
Nelson, K. M.; Dahlin, J. L.; Bisson, J.; Graham, J.; Pauli, G. F.; Walters, M. A. The essential medicinal chemistry of curcumin. J. Med. Chem. 2017, 60, 1620-1637.
Heger, M. Drug screening: Don't discount all curcumin trial data. Nature 2017, 543, 40.
Zhou, J.; Du, X. W.; Berciu, C.; He, H. J.; Shi, J F. .; Nicastro, D.; Xu, B. Enzyme-instructed self-assembly for spatiotemporal profiling of the activities of alkaline phosphatases on live cells. Chem 2016, 1, 246-263.
Goldstein, D. J.; Rogers, C. E.; Harris, H. Expression of alkaline phosphatase loci in mammalian tissues. Proc. Natl. Acad. Sci. USA 1980, 77, 2857-2860.
Bourne, G.; MacKinnon, M. The distribution of alkaline phosphatase in various tissues. Exp. Physiol. 1943, 32, 1-20.
Coe, J. I. Postmortem chemistries on human vitreous humor. Am. J. Clin. Pathol. 1969, 51, 741-750.
Wang, Y. J.; Pan, M. H.; Cheng, A. L.; Lin, L. I.; Ho, Y. S.; Hsieh, C. Y.; Lin, J. K. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharmaceut. Biomed. Anal. 1997, 15, 1867-1876.
Griesser, M.; Pistis, V.; Suzuki, T.; Tejera, N.; Pratt, D. A.; Schneider, C. Autoxidative and cyclooxygenase-2 catalyzed transformation of the dietary chemopreventive agent curcumin. J. Biol. Chem. 2011, 286, 1114-1124.
Halliwell, B.; Clement, M. V.; Long, L. H. Hydrogen peroxide in the human body. FEBS Lett. 2000, 486, 10-13.
Fishman, W. H.; Inglis, N. R.; Green, S.; Anstiss, C. L.; Gosh, N. K.; Reif, A. E.; Rustigian, R.; Krant, M. J.; Stolbach, L. L. Immunology and biochemistry of Regan isoenzyme of alkaline phosphatase in human cancer. Nature 1968, 219, 697-699.
Pires, R. A.; Abul-Haija, Y. M.; Costa, D. S.; Novoa-Carballal, R.; Reis, R. L.; Ulijn, R. V.; Pashkuleva, I. Controlling cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile. J. Am. Chem. Soc. 2015, 137, 576-579.
Hoylaerts, M. F.; Manes, T.; Millán, J. L. Molecular mechanism of uncompetitive inhibition of human placental and germ-cell alkaline-phosphatase. Biochem. J. 1992, 286, 23-30.
Dahl, R.; Sergienko, E. A.; Su, Y.; Mostofi, Y. S.; Yang, L.; Simao, A. M.; Narisawa, S.; Brown, B.; Mangravita-Novo, A.; Vicchiarelli, M. et al. Discovery and validation of a series of aryl sulfonamides as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). J. Med. Chem. 2009, 52, 6919-6925.
Howard, A. D.; Berger, J.; Gerber, L.; Familletti, P.; Udenfriend, S. Characterization of the phosphatidylinositol- glycan membrane anchor of human placental alkaline phosphatase. Proc. Natl. Acad. Sci. USA 1987, 84, 6055-6059.
Julien, O.; Kampmann, M.; Bassik, M. C.; Zorn, J. A.; Venditto, V. J.; Shimbo, K.; Agard, N. J.; Shimada, K.; Rheingold, A. L.; Stockwell, B. R. et al. Unraveling the mechanism of cell death induced by chemical fibrils. Nat. Chem. Biol. 2014, 10, 969-976.
Takahashi, N.; Duprez, L.; Grootjans, S.; Cauwels, A.; Nerinckx, W.; DuHadaway, J. B.; Goossens, V.; Roelandt, R.; Van Hauwermeiren, F.; Libert, C. et al. Necrostatin-1 analogues: Critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis. 2012, 3, e437.
Jiang, Y. Y.; Cui, D.; Fang, Y.; Zhen, X.; Upputuri, P. K.; Pramanik, M.; Ding, D.; Pu, K. Y. Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/ photoacoustic imaging guided chemo-photothermal therapy. Biomaterials 2017, 145, 168-177.
Zhang, J. J.; Zhen, X.; Upputuri, P. K.; Pramanik, M.; Chen, P.; Pu, K. Y. Activatable photoacoustic nanoprobes for in vivo ratiometric imaging of peroxynitrite. Adv. Mater. 2017, 29, 1604764.
Zhen, X.; Zhang, C. W.; Xie, C.; Miao, Q. Q.; Lim, K. L.; Pu, K. Y. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. ACS Nano 2016, 10, 6400-6409.
Luo, Z. C.; Wu, Q. J.; Yang, C. B.; Wang, H. M.; He, T.; Wang, Y. Z.; Wang, Z. Y.; Chen, H.; Li, X. Y.; Gong, C. Y. et al. A powerful CD8+ T-cell stimulating D-tetra-peptide hydrogel as a very promising vaccine adjuvant. Adv. Mater. 2017, 29, 1601776.
Zhang, Y.; Guo, Y. M.; Xianyu, Y.; Chen, W. W.; Zhao, Y. Y.; Jiang, X. Y. Nanomaterials for ultrasensitive protein detection. Adv. Mater. 2013, 25, 3802-3819.
Xie, C.; Zhen, X.; Lyu, Y.; Pu, K. Y. Nanoparticle regrowth enhances photoacoustic signals of semiconducting macromolecular probe for in vivo imaging. Adv. Mater. 2017, 29, 1703693.
Zhu, C. L.; Huo, D.; Chen, Q. S.; Xue, J. J.; Shen, S.; Xia, Y. N. A eutectic mixture of natural fatty acids can serve as the gating material for near-infrared-triggered drug release. Adv. Mater. 2017, 29, 1703702.
Capuzzi, S. J.; Muratov, E. N.; Tropsha, A. Phantom PAINS: Problems with the utility of alerts for pan-assay interference compounds. J. Chem. Inf. Model 2017, 57, 417-427.
Wang, J. G.; Zhang, C. -J.; Chia, W. N.; Loh, C. C. Y.; Li, Z. J.; Lee, Y. M.; He, Y. K.; Yuan, L. -X.; Lim, T. K.; Liu, M. et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat. Commun. 2015, 6, 10111.
Gupta, S. C.; Prasad, S.; Kim, J. H.; Patchva, S.; Webb, L. J.; Priyadarsini, I. K.; Aggarwal, B. B. Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep. 2011, 28, 1937-1955.
Baker, M. Deceptive curcumin offers cautionary tale for chemists. Nature 2017, 541, 144-145.
Singh, J.; Petter, R. C.; Baillie, T. A.; Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 2011, 10, 307-317.