Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Enzymatic formation of curcumin in vitro and in vivo

Jiaqing Wang1Taotao Xiong2Jie Zhou1Hongjian He1Dongdong Wu1Xuewen Du1Xingyi Li2()Bing Xu1()
Department of ChemistryBrandeis University415 South StreetWalthamMA02454USA
Institute of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical University270 Xueyuan RoadWenzhou325027China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The recent classification of curcumin (Cur) as a pan-assay interference compound (PAINS) and an invalid metabolic panaceas (IMPS) candidate demonstrated the controversial nature of Cur as a drug lead owing to its aggregation in aqueous phase and inherent instability in vivo. Here, we report a simple prodrug approach to generate nanoparticles of Curin situ that allow it to function reproducibly as an anticancer and an anti-inflammatory agent. Diphosphorylated curcumin (Cur-2p), a precursor of Cur and a substrate of alkaline phosphatase (ALP), exhibited drastically improved chemical stability and low aggregation in water. After conversion to curcumin around or inside cancer cells by ALP, Cur-2p selectively inhibited cancer cells that overexpressed ALP, but did not affect normal cells. Moreover, the intravitreal injection of Cur-2p resulted in excellent intraocular biocompatibility with no apparent damage to the morphology and visual function of retina, as shown by fundus imaging, optical coherence tomography (OCT), and histological observation. A rodent model of uveitis showed that Cur-2p significantly suppressed the inflammation response compared with Cur. As a rational approach to investigate and apply PAINS and IMPS candidates, this work presents a straightforward method to maximize the potential of drug leads and ultimately fulfil the promises and potential clinical benefits of PAINS and IMPS candidates.

Electronic Supplementary Material

Download File(s)
12274_2018_1994_MOESM1_ESM.pdf (8.9 MB)

References

1

Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646-674.

2

Hopkins, A. L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682-690.

3

Yang, Y.; Mu, J.; Xing, B. Photoactivated drug delivery and bioimaging. Wiley Interdiscip. Rev. : Nanomed. Nanobiotechnol. 2017, 9, doi: 10.1002/wnan.1408.

4

Sant, S.; Tao, S. L.; Fisher, O. Z.; Xu, Q. B.; Peppas, N. A.; Khademhosseini, A. Microfabrication technologies for oral drug delivery. Adv. Drug Deliver. Rev. 2012, 64, 496-507.

5

Abe, Y.; Hashimoto, S.; Horie, T. Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol. Res. 1999, 39, 41-47.

6

Aggarwal, B. B.; Harikumar, K. B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 2009, 41, 40-59.

7

Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Curcumin as a wound healing agent. Life Sci. 2014, 116, 1-7.

8

Bar-Sela, G.; Epelbaum, R.; Schaffer, M. Curcumin as an anti-cancer agent: Review of the gap between basic and clinical applications. Curr. Med. Chem. 2010, 17, 190-197.

9

Wilken, R.; Veena, M. S.; Wang, M. B.; Srivatsan, E. S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 2011, 10, 12.

10

Prasad, S.; Tyagi, A. K.; Aggarwal, B. B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice. Cancer Res. Treat. 2014, 46, 2-18.

11

Ahmed, S.; Anuntiyo, J.; Malemud, C. J.; Haqqi, T. M. Biological basis for the use of botanicals in osteoarthritis and rheumatoid arthritis: A review. Evid. -Based Complement Alternat Med. 2005, 2, 301-308.

12

Zhou, H. Y.; Beevers, C. S.; Huang, S. L. The targets of curcumin. Curr. Drug Targets 2011, 12, 332-347.

13

Ahsan, H.; Parveen, N.; Khan, N. U.; Hadi, S. M. Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chem. -Biol. Interact. 1999, 121, 161-175.

14

Lim, G. P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S. A.; Cole, G. M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 2001, 21, 8370-8377.

15

Olivera, A.; Moore, T. W.; Hu, F.; Brown, A. P.; Sun, A. M.; Liotta, D. C.; Snyder, J. P.; Yoon, Y.; Shim, H.; Marcus, A. I. et al. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3, 5-bis(2-pyridinylmethylidene)-4-piperidone (EF31): Anti-inflammatory and anti-cancer properties. Int. Immunopharmacol. 2012, 12, 368-377.

16

Rahman, I.; Adcock, I. M. Oxidative stress and redox regulation of lung inflammation in COPD. Eur. Respir. J. 2006, 28, 219-242.

17

Xie, L.; Li, X. K.; Funeshima-Fuji, N.; Kimura, H.; Matsumoto, Y.; Isaka, Y.; Takahara, S. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int. Immunopharmacol. 2009, 9, 575-581.

18

Zhuang, X. Y.; Xiang, X. Y.; Grizzle, W.; Sun, D. M.; Zhang, S. Q.; Axtell, R. C.; Ju, S. W.; Mu, J. Y.; Zhang, L. F.; Steinman, L. et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 2011, 19, 1769-1779.

19

Wang, L.; Feng, J. F.; Chen, X. N.; Guo, W.; Du, Y. W.; Wang, Y. Y.; Zang, W. Q.; Zhang, S. J.; Zhao, G. Q. Myricetin enhance chemosensitivity of 5-fluorouracil on esophageal carcinoma in vitro and in vivo. Cancer Cell Int. 2014, 14, 71.

20

Maher, P.; Akaishi, T.; Schubert, D.; Abe, K. A pyrazole derivative of curcumin enhances memory. Neurobiol. Aging 2010, 31, 706-709.

21

Zhang, X. L.; Tian, Y. L.; Li, Z.; Tian, X. Y.; Sun, H. B.; Liu, H.; Moore, A.; Ran, C. Z. Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer's disease. J. Am. Chem. Soc. 2013, 135, 16397-16409.

22

Baell, J.; Walters, M. A. Chemistry: Chemical con artists foil drug discovery. Nature 2014, 513, 481-483.

23

Bisson, J.; McAlpine, J. B.; Friesen, J. B.; Chen, S. N.; Graham, J.; Pauli, G. F. Can invalid bioactives undermine natural product-based drug discovery? J. Med. Chem. 2016, 59, 1671-1690.

24

Nelson, K. M.; Dahlin, J. L.; Bisson, J.; Graham, J.; Pauli, G. F.; Walters, M. A. The essential medicinal chemistry of curcumin. J. Med. Chem. 2017, 60, 1620-1637.

25

Heger, M. Drug screening: Don't discount all curcumin trial data. Nature 2017, 543, 40.

26

Zhou, J.; Du, X. W.; Berciu, C.; He, H. J.; Shi, J F. .; Nicastro, D.; Xu, B. Enzyme-instructed self-assembly for spatiotemporal profiling of the activities of alkaline phosphatases on live cells. Chem 2016, 1, 246-263.

27

Goldstein, D. J.; Rogers, C. E.; Harris, H. Expression of alkaline phosphatase loci in mammalian tissues. Proc. Natl. Acad. Sci. USA 1980, 77, 2857-2860.

28

Bourne, G.; MacKinnon, M. The distribution of alkaline phosphatase in various tissues. Exp. Physiol. 1943, 32, 1-20.

29

Coe, J. I. Postmortem chemistries on human vitreous humor. Am. J. Clin. Pathol. 1969, 51, 741-750.

30

Wang, Y. J.; Pan, M. H.; Cheng, A. L.; Lin, L. I.; Ho, Y. S.; Hsieh, C. Y.; Lin, J. K. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharmaceut. Biomed. Anal. 1997, 15, 1867-1876.

31

Griesser, M.; Pistis, V.; Suzuki, T.; Tejera, N.; Pratt, D. A.; Schneider, C. Autoxidative and cyclooxygenase-2 catalyzed transformation of the dietary chemopreventive agent curcumin. J. Biol. Chem. 2011, 286, 1114-1124.

32

Halliwell, B.; Clement, M. V.; Long, L. H. Hydrogen peroxide in the human body. FEBS Lett. 2000, 486, 10-13.

33

Fishman, W. H.; Inglis, N. R.; Green, S.; Anstiss, C. L.; Gosh, N. K.; Reif, A. E.; Rustigian, R.; Krant, M. J.; Stolbach, L. L. Immunology and biochemistry of Regan isoenzyme of alkaline phosphatase in human cancer. Nature 1968, 219, 697-699.

34

Pires, R. A.; Abul-Haija, Y. M.; Costa, D. S.; Novoa-Carballal, R.; Reis, R. L.; Ulijn, R. V.; Pashkuleva, I. Controlling cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile. J. Am. Chem. Soc. 2015, 137, 576-579.

35

Hoylaerts, M. F.; Manes, T.; Millán, J. L. Molecular mechanism of uncompetitive inhibition of human placental and germ-cell alkaline-phosphatase. Biochem. J. 1992, 286, 23-30.

36

Dahl, R.; Sergienko, E. A.; Su, Y.; Mostofi, Y. S.; Yang, L.; Simao, A. M.; Narisawa, S.; Brown, B.; Mangravita-Novo, A.; Vicchiarelli, M. et al. Discovery and validation of a series of aryl sulfonamides as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). J. Med. Chem. 2009, 52, 6919-6925.

37

Howard, A. D.; Berger, J.; Gerber, L.; Familletti, P.; Udenfriend, S. Characterization of the phosphatidylinositol- glycan membrane anchor of human placental alkaline phosphatase. Proc. Natl. Acad. Sci. USA 1987, 84, 6055-6059.

38

Julien, O.; Kampmann, M.; Bassik, M. C.; Zorn, J. A.; Venditto, V. J.; Shimbo, K.; Agard, N. J.; Shimada, K.; Rheingold, A. L.; Stockwell, B. R. et al. Unraveling the mechanism of cell death induced by chemical fibrils. Nat. Chem. Biol. 2014, 10, 969-976.

39

Takahashi, N.; Duprez, L.; Grootjans, S.; Cauwels, A.; Nerinckx, W.; DuHadaway, J. B.; Goossens, V.; Roelandt, R.; Van Hauwermeiren, F.; Libert, C. et al. Necrostatin-1 analogues: Critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis. 2012, 3, e437.

40

Jiang, Y. Y.; Cui, D.; Fang, Y.; Zhen, X.; Upputuri, P. K.; Pramanik, M.; Ding, D.; Pu, K. Y. Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/ photoacoustic imaging guided chemo-photothermal therapy. Biomaterials 2017, 145, 168-177.

41

Zhang, J. J.; Zhen, X.; Upputuri, P. K.; Pramanik, M.; Chen, P.; Pu, K. Y. Activatable photoacoustic nanoprobes for in vivo ratiometric imaging of peroxynitrite. Adv. Mater. 2017, 29, 1604764.

42

Zhen, X.; Zhang, C. W.; Xie, C.; Miao, Q. Q.; Lim, K. L.; Pu, K. Y. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. ACS Nano 2016, 10, 6400-6409.

43

Luo, Z. C.; Wu, Q. J.; Yang, C. B.; Wang, H. M.; He, T.; Wang, Y. Z.; Wang, Z. Y.; Chen, H.; Li, X. Y.; Gong, C. Y. et al. A powerful CD8+ T-cell stimulating D-tetra-peptide hydrogel as a very promising vaccine adjuvant. Adv. Mater. 2017, 29, 1601776.

44

Zhang, Y.; Guo, Y. M.; Xianyu, Y.; Chen, W. W.; Zhao, Y. Y.; Jiang, X. Y. Nanomaterials for ultrasensitive protein detection. Adv. Mater. 2013, 25, 3802-3819.

45

Xie, C.; Zhen, X.; Lyu, Y.; Pu, K. Y. Nanoparticle regrowth enhances photoacoustic signals of semiconducting macromolecular probe for in vivo imaging. Adv. Mater. 2017, 29, 1703693.

46

Zhu, C. L.; Huo, D.; Chen, Q. S.; Xue, J. J.; Shen, S.; Xia, Y. N. A eutectic mixture of natural fatty acids can serve as the gating material for near-infrared-triggered drug release. Adv. Mater. 2017, 29, 1703702.

47

Capuzzi, S. J.; Muratov, E. N.; Tropsha, A. Phantom PAINS: Problems with the utility of alerts for pan-assay interference compounds. J. Chem. Inf. Model 2017, 57, 417-427.

48

Wang, J. G.; Zhang, C. -J.; Chia, W. N.; Loh, C. C. Y.; Li, Z. J.; Lee, Y. M.; He, Y. K.; Yuan, L. -X.; Lim, T. K.; Liu, M. et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat. Commun. 2015, 6, 10111.

49

Gupta, S. C.; Prasad, S.; Kim, J. H.; Patchva, S.; Webb, L. J.; Priyadarsini, I. K.; Aggarwal, B. B. Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep. 2011, 28, 1937-1955.

50

Baker, M. Deceptive curcumin offers cautionary tale for chemists. Nature 2017, 541, 144-145.

51

Singh, J.; Petter, R. C.; Baillie, T. A.; Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 2011, 10, 307-317.

Nano Research
Pages 3453-3461
Cite this article:
Wang J, Xiong T, Zhou J, et al. Enzymatic formation of curcumin in vitro and in vivo. Nano Research, 2018, 11(6): 3453-3461. https://doi.org/10.1007/s12274-018-1994-z
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return