AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials

Georgies Alene Asres1José J. Baldoví2,3Aron Dombovari1Topias Järvinen1Gabriela Simone Lorite1Melinda Mohl1Andrey Shchukarev4Alejandro Pérez Paz3,5Lede Xian2,3Jyri-Pekka Mikkola4,6Anita Lloyd Spetz1,7Heli Jantunen1Ángel Rubio2,3( )Krisztian Kordás1( )
Microelectronics Research UnitFaculty of Information Technology and Electrical EngineeringUniversity of OuluP.O. Box 4500FI-90014OuluFinland
Max Planck Institute for the Structure and Dynamics of MatterLuruper Chaussee 14922761Hamburg, Germany
Nano-Bio Spectroscopy GroupEuropean Theoretical Spectroscopy Facility (ETSF)Universidad del País VascoCFM SCIC-UPV/EHU-MPC DIPCAvenida Tolosa 7220018San Sebastian, Spain
Technical ChemistryDepartment of ChemistryChemical-Biological CentreUmeå UniversitySE-90187UmeåSweden
School of Chemical Sciences and EngineeringSchool of Physics and NanotechnologyYachay Tech University, UrcuquíEcuador
Industrial Chemistry & Reaction EngineeringDepartment of Chemical EngineeringJohan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Åbo-TurkuFinland
Sensor and Actuator SystemsDepartment of PhysicsChemistry and BiologyLinköping UniversitySE-58183LinköpingSweden
Show Author Information

Graphical Abstract

Abstract

Owing to their higher intrinsic electrical conductivity and chemical stability with respect to their oxide counterparts, nanostructured metal sulfides are expected to revive materials for resistive chemical sensor applications. Herein, we explore the gas sensing behavior of WS2 nanowire-nanoflake hybrid materials and demonstrate their excellent sensitivity (0.043 ppm-1) as well as high selectivity towards H2S relative to CO, NH3, H2, and NO (with corresponding sensitivities of 0.002, 0.0074, 0.0002, and 0.0046 ppm-1, respectively). Gas response measurements, complemented with the results of X-ray photoelectron spectroscopy analysis and first-principles calculations based on density functional theory, suggest that the intrinsic electronic properties of pristine WS2 alone are not sufficient to explain the observed high sensitivity towards H2S. A major role in this behavior is also played by O doping in the S sites of the WS2 lattice. The results of the present study open up new avenues for the use of transition metal disulfide nanomaterials as effective alternatives to metal oxides in future applications for industrial process control, security, and health and environmental safety.

Electronic Supplementary Material

Download File(s)
12274_2018_2009_MOESM1_ESM.pdf (1.7 MB)

References

1

Neri, G. First fifty years of chemoresistive gas sensors. Chemosensors 2015, 3, 1–20.

2

Devan, R. S.; Patil, R. A.; Lin, J. H.; Ma, Y. R. Onedimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 2012, 22, 3326–3370.

3

Korotcenkov, G. Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches. Sens. Actuat. B Chem. 2015, 107, 209–232.

4

Palmisano, V.; Weidner, E.; Boon-Brett, L.; Bonato, C.; Harskamp, F.; Moretto, P.; Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W. J. Selectivity and resistance to poisons of commercial hydrogen sensors. Int. J. Hydrogen Energy 2015, 40, 11740–11747.

5

Modi, A.; Koratkar, N.; Lass, E.; Wei, B. Q.; Ajayan, P. M. Miniaturized gas ionization sensors using carbon nanotubes. Nature 2003, 424, 171–174.

6

Usha, S. P.; Mishra, S. K.; Gupta, B. D. Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnO nanoparticles: A comparison of surface plasmon resonance and lossy mode resonance. Sens. Actuat. B Chem. 2015, 218, 196–204.

7

Chen, G. G.; Paronyan, T. M.; Pigos, E. M.; Harutyunyan, A. R. Enhanced gas sensing in pristine carbon nanotubes under continuous ultraviolet light illumination. Sci. Rep. 2012, 2, 343.

8

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

9

Janata, J.; Josowicz, M. Conducting polymers in electronic chemical sensors. Nat. Mater. 2003, 2, 19–24.

10

Kannan, P. K.; Late, D. J.; Morgan, H.; Rout, C. S. Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 2015, 7, 13293–13312.

11

Li, B. L.; Wang, J. P.; Zou, H. L.; Garaj, S.; Lim, C. T.; Xie, J. P.; Li, N. B.; Leong, D. T. Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv. Funct. Mater. 2016, 26, 7034–7056.

12

Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673.

13

Cho, B.; Hahm, M. G.; Choi, M.; Yoon, J.; Kim, A. R.; Lee, Y. -J.; Park, S. -G.; Kwon, J. -D.; Kim, C. S.; Song, M. et al. Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 2015, 5, 8052.

14

Late, D. J.; Huang, Y. -K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thinlayered MoS2 transistors. ACS Nano 2013, 7, 4879–4891.

15

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

16

Ko, K. Y.; Song, J. -G.; Kim, Y.; Choi, T.; Shin, S.; Lee, C. W.; Lee, K.; Koo, J.; Lee, H.; Kim, J. et al. Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 2016, 10, 9287–9296.

17

O'Brien, M.; Lee, K.; Morrish, R.; Berner, N. C.; McEvoy, N.; Wolden, C. A.; Duesberg, G. S. Plasma assisted synthesis of WS2 for gas sensing applications. Chem. Phys. Lett. 2014, 615, 6–10.

18

Zhou, C. J.; Yang, W. H.; Zhu, H. L. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2. J. Chem. Phys. 2015, 142, 214704.

19

Asres, G. A.; Dombovari, A.; Sipola, T.; Pskás, R.; Kukovecz, A.; Kónya, Z.; Popov, A.; Lin, J. -F.; Lorite, G. S.; Mohl, M. et al. A novel WS2 nanowire-nanoflake hybrid material synthesized from WO3 nanowires in sulfur vapor. Sci. Rep. 2016, 6, 25610.

20

Ma, J. M.; Mei, L.; Chen, Y. J.; Li, Q. H.; Wang, T. H.; Xu, Z.; Duan, X. C.; Zheng, W. J. α-Fe2O3 nanochains: Ammonium acetate-based ionothermal synthesis and ultrasensitive sensors for low-ppm-level H2S gas. Nanoscale 2013, 5, 895–898.

21

Li, Z. J.; Huang, Y. W.; Zhang, S. C.; Chen, W. M.; Kuang, Z.; Ao, D. Y.; Liu, W.; Fu, Y. Q. A fast response & recovery H2S gas sensor based on α-Fe2O3 nanoparticles with ppb level detection limit. J. Hazard. Mater. 2015, 300, 167–174.

22

Manorama, S.; Devi, G. S.; Rao, V. J. Hydrogen sulfide sensor based on tin oxide deposited by spray pyrolysis and microwave plasma chemical vapor deposition. Appl. Phys. Lett. 1994, 64, 3163–3165.

23

Kneer, J.; Knobelspies, S.; Bierer, B.; Wöllenstein, J.; Palzer, S. New method to selectively determine hydrogen sulfide concentrations using CuO layers. Sens. Actuat. B Chem 2016, 222, 625–631.

24

Zhang, F.; Zhu, A. W.; Luo, Y. P.; Tian, Y.; Yang, J. H.; Qin, Y. CuO nanosheets for sensitive and selective determination of H2S with high recovery ability. J. Phys. Chem. C 2010, 114, 19214–19219.

25

Li, Y. H.; Luo, W.; Qin, N.; Dong, J. P.; Wei, J.; Li, W.; Feng, S. S.; Chen, J. C.; Xu, J. Q.; Elzatahry, A. A. et al. Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. Angew. Chem., Int. Ed. 2014, 53, 9035–9040.

26

Li, Z. J.; Niu, X. Y.; Lin, Z. J.; Wang, N. N.; Shen, H. H.; Liu, W.; Sun, K.; Fu, Y. Q.; Wang, Z. G. Hydrothermally synthesized CeO2 nanowires for H2S sensing at room temperature. J. Alloy. Comp. 2016, 682, 647–653.

27

Li, M.; Zhou, D. X.; Zhao, J.; Zheng, Z. P.; He, J. G.; Hu, L.; Xia, Z.; Tang, J.; Liu, H. Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection. Sens. Actuat. B Chem. 2015, 217, 198–201.

28

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

29

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car.; R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.

30

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

31

Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 1998, 58, 3641–3662.

32

Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

33

Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204.

34

Kukkola, J.; Mohl, M.; Leino, A. -R.; Mäklin, J.; Halonen, N.; Shchukarev, A; Konya, Z.; Jantunen, H.; Kordas, K. Room temperature hydrogen sensors based on metal decorated WO3 nanowires. Sens. Actuat. B Chem. 2013, 186, 90–95.

35

Leenaerts, O.; Partoens, B.; Peeters, F. M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416.

36

Perrozzi, F.; Emamjomeh, S. M.; Paolucci, V.; Taglieri, G.; Ottaviano, L.; Cantalini, C. Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2. Sens. Actuat. B Chem. 2017, 243, 812–822.

37

Kukkola, J.; Mohl, M.; Leino, A. -R.; Tóth, G.; Wu, M. -C.; Shchukarev, A.; Popov, A.; Mikkola, J. -P.; Lauri, J.; Riihimäki, M. et al. Inkjet-printed gas sensors: Metal decorated WO3 nanoparticles and their gas sensing properties. J. Mater. Chem. 2012, 22, 17878–17886.

38

Kukkola, J.; Mäklin, J.; Halonen, N.; Kyllönen, T.; Tóth, G.; Szabó, M.; Shchukarev, A.; Mikkola, J. -P.; Jantunen, H.; Kordás, K. Gas sensors based on anodic tungsten oxide. Sens. Actuat. B Chem. 2011, 153, 293–300.

39

Cha, J. -H.; Choi, S. -J.; Yu, S.; Kim, I. -D. 2D WS2-edge functionalized multi-channel carbon nanofibers: Effect of WS2 edge-abundant structure on room temperature NO2 sensing. J. Mater. Chem. A 2017, 5, 8725–8732.

Nano Research
Pages 4215-4224
Cite this article:
Asres GA, Baldoví JJ, Dombovari A, et al. Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials. Nano Research, 2018, 11(8): 4215-4224. https://doi.org/10.1007/s12274-018-2009-9

906

Views

32

Downloads

82

Crossref

N/A

Web of Science

82

Scopus

0

CSCD

Altmetrics

Received: 16 November 2017
Revised: 23 January 2018
Accepted: 27 January 2018
Published: 20 February 2018
© The author(s) 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return