AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electrochemical behaviors of hierarchical copper nano-dendrites in alkaline media

Bowei Zhang1Guang Yang1,2Chaojiang Li3Kang Huang4Junsheng Wu4( )Shiji Hao1,2Yizhong Huang1( )
School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
Interdisciplinary Graduate SchoolNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
Department of Materials Science and EngineeringNational University of Singapore9 Engineering Drive 1Singapore117575Singapore
Institute of Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
Show Author Information

Graphical Abstract

Abstract

In this study, hierarchical copper nano-dendrites (CuNDs) are fabricated via the electrodeposition method. The electrochemical behaviors of the as-obtained hierarchical CuNDs in 0.1 M NaOH aqueous solution are subsequently studied. The CuNDs experience a non-equilibrium oxidation process when subjected to cyclic voltammetry (CV) measurements. The first oxidation peak O1 in CV is attributed to the formation of an epitaxial Cu2O layer over the surface of the hierarchical CuNDs. However, the second oxidation peak O2 in CV appears unusually broad across a wide potential range. In this region, the reaction process starts with the nucleation and growth of Cu(OH)2 nanoneedles, followed by the oxidation of Cu2O. Upon the increase of potential, Cu2O is gradually transformed to CuO and Cu(OH)2, forming a dual-layer structure with high productivity of Cu(OH)2 nanoneedles.

References

1

Du, J. L.; Chen, Z. F.; Ye, S. R.; Wiley, B. J.; Meyer, T. J. Copper as a robust and transparent electrocatalyst for water oxidatio. Angew. Chem., Int. Ed. 2015, 54, 2073–2078.

2

Chen, Z. F.; Meyer, T. J. Copper(Ⅱ) catalysis of water oxidation. Angew. Chem. 2013, 125, 728–731.

3

Coggins, M. T. Zhang, M. T.; Chen, Z. F.; Song, N.; Meyer, T. J. Single-site copper(Ⅱ) water oxidation electrocatalysis: Rate enhancements with HPO42− as a proton acceptor at pH 8. Angew. Chem., Int. Ed. 2014, 53, 12226–12230.

4

Liu, X. M.; Sui, Y. M.; Yang, X. Y.; Wei, Y. J.; Zou, B. Cu nanowires with clean surfaces: Synthesis and enhanced electrocatalytic activity. ACS Appl. Mater. Interfaces 2016, 8, 26886–26894.

5

Periasamy, A. P.; Liu, J. F.; Lin, H. -M.; Chang, H. -T. Synthesis of copper nanowire decorated reduced graphene oxide for electro-oxidation of methanol. J. Mater. Chem. A 2013, 1, 5973–5981.

6

Heli, H.; Jafarian, M.; Mahjani, M.; Gobal, F. Electro-oxidation of methanol on copper in alkaline solution. Electrochim. Acta 2004, 49, 4999–5006.

7

Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.

8

Wei, Q. L.; Xiong, F. Y.; Tan, S. S.; Huang, L.; Lan, E. H.; Dunn, B.; Mai, L. Q. Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage. Adv. Mater. 2017, 29, 1602300.

9

Xia, L. -P.; Guo, P.; Wang, Y.; Ding, S. Q.; He, J. -B. Multilaminated copper nanoparticles deposited on conductive substrates for electrocatalytic oxidation of methanol in alkaline electrolytes. J. Power Sources 2014, 262, 232–238.

10

Gawande, M. B.; Goswami, A.; Felpin, F. -X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811.

11

Jia, X. F.; Yang, X.; Li, J.; Li, D. Y.; Wang, E. K. Stable Cu nanoclusters: From an aggregation-induced emission mechanism to biosensing and catalytic applications. Chem. Commun. 2014, 50, 237–239.

12

Wu, J. S.; Li, X. G.; Yadian, B.; Liu, H.; Chun, S.; Zhang, B. W.; Zhou, K.; Gan, C. L.; Huang, Y. Z. Nano-scale oxidation of copper in aqueous solution. Electrochem. Commun. 2013, 26, 21–24.

13

Zhang, B. W.; Chen, B. S.; Wu, J. S.; Hao, S. J.; Yang, G.; Cao, X.; Jing, L.; Zhu, M. M.; Tsang, S. H.; Teo, E. H. T. et al. The electrochemical response of single crystalline copper nanowires to atmospheric air and aqueous solution. Small 2017, 13, 1603411.

14

Zhang, B. W.; Hao, S. J.; Wu, J. S.; Li, X. G.; Huang, Y. Z. Evidence of a nanosized copper anodic reaction in an anaerobic sulfide aqueous solution. RSC Adv. 2016, 6, 19937–19943.

15

Cheng, N. Y.; Xue, Y. R.; Liu, Q.; Tian, J. Q.; Zhang, L. X.; Asiri, A. M.; Sun, X. P. Cu/(Cu(OH)2-CuO) core/shell nanorods array: In-situ growth and application as an efficient 3D oxygen evolution anode. Electrochim. Acta 2015, 163, 102–106.

16

Zhang, S.; Ma, Y. Y.; Zhang, H.; Zhou, X. M.; Chen, X.; Qu, Y. Q. Additive-free, robust H2 production from H2O and DMF by dehydrogenation catalyzed by Cu/Cu2O formed in situ. Angew. Chem., Int. Ed. 2017, 56, 8245–8249.

17

Huan, T. N.; Simon, P.; Benayad, A.; Guetaz, L.; Artero, V.; Fontecave, M. Cu/Cu2O electrodes and CO2 reduction to formic acid: Effects of organic additives on surface morphology and activity. Chem. —Eur. J. 2016, 22, 14029–14035.

18

de Brito, J. F.; da Silva, A. A.; Cavalheiro, A. J.; Zanoni, M. V. B. Evaluation of the parameters affecting the photoelectrocatalytic reduction of CO2 to CH3OH at Cu/Cu2O electrode. Int. J. Electrochem. Sci. 2014, 9, 5961–5973.

19

Zhao, Y. X.; Zhang, Y.; Zhao, H.; Li, X. J.; Li, Y. P.; Wen, L.; Yan, Z. F.; Huo, Z. Y. Epitaxial growth of hyperbranched Cu/Cu2O/CuO core–shell nanowire heterostructures for lithium-ion batteries. Nano Res. 2015, 8, 2763–2776.

20

Dubale, A. A.; Pan, C. -J.; Tamirat, A. G.; Chen, H. -M.; Su, W. -N.; Chen, C. -H.; Rick, J.; Ayele, D. W.; Aragaw, B. A.; Lee, J. -F. et al. Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. J. Mater. Chem. A 2015, 3, 12482–12499.

21

Xu, H.; Feng, J. -X.; Tong, Y. -X.; Li, G. R. Cu2O–Cu hybrid foams as high-performance electrocatalysts for oxygen evolution reaction in alkaline media. ACS Catal. 2017, 7, 986–991.

22

Huan, T. N.; Rousse, G.; Zanna, S.; Lucas, I. T.; Xu, X. Z.; Menguy, N.; Mougel, V.; Fontecave, M. A dendritic nanostructured copper oxide electrocatalyst for the oxygen evolution reaction. Angew. Chem. 2017, 129, 4870–4874.

23

Shin, H. -C.; Liu, M. L. Copper foam structures with highly porous nanostructured walls. Chem. Mater. 2004, 16, 5460– 5464.

24

Wu, X. F.; Bai, H.; Zhang, J. X.; Chen, F. E.; Shi, G. Copper hydroxide nanoneedle and nanotube arrays fabricated by anodization of copper. J. Phys. Chem. B 2005, 109, 22836– 22842.

25

Zhang, W.; Wen, X.; Yang, S.; Berta, Y.; Wang, Z. L. Singlecrystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature. Adv. Mater. 2003, 15, 822–825.

26

La, D. -D.; Park, S. -Y.; Choi, Y. -W.; Kim, Y. -S. Wire-like bundle arrays of copper hydroxide prepared by the electrochemical anodization of Cu foil. Bull. Korean Chem. Soc. 2010, 31, 2283–2288.

Nano Research
Pages 4225-4231
Cite this article:
Zhang B, Yang G, Li C, et al. Electrochemical behaviors of hierarchical copper nano-dendrites in alkaline media. Nano Research, 2018, 11(8): 4225-4231. https://doi.org/10.1007/s12274-018-2010-3

691

Views

14

Crossref

N/A

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 17 November 2017
Revised: 22 January 2018
Accepted: 27 January 2018
Published: 09 February 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return