Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis

Zhiyuan Qi1,2Yuchen Pei1,2Tian Wei Goh1,2Zhaoyi Wang1,3Xinle Li1,2Mary Lowe1Raghu V. Maligal-Ganesh1,2Wenyu Huang1,2()
Department of ChemistryIowa State UniversityAmesIowa50011USA
Ames LaboratoryU.S. Department of EnergyAmesIowa50011USA
Department of ChemistryBeijing Normal UniversityBeijing100875China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

We report a facile strategy to synthesize intermetallic nanoparticle (iNP) electrocatalysts via one-pot pyrolysis of a zeolitic imidazolate framework, ZIF-8, encapsulating precious metal nanoparticles (NPs). ZIF-8 serves not only as precursor for N-doped carbon (NC), but also as Zn source for the formation of intermetallic or alloy NPs with the encapsulated metals. The resulting sub-4 nm PtZn iNPs embedded in NC exhibit high sintering resistance up to 1, 000 ℃. Importantly, the present methodology allows fine-tuning of both composition (e.g., PdZn and RhZn iNPs, as well as AuZn and RuZn alloy NPs) and size (2.4, 3.7, and 5.4 nm PtZn) of the as-formed bimetallic NPs. To the best of our knowledge, this is the first report of a metal-organic framework (MOF) with multiple functionalities, such as secondary metal source, carbon precursor, and size-regulating reagent, which promote the formation of iNPs. This work opens a new avenue for the synthesis of highly uniform and stable iNPs.

Electronic Supplementary Material

Download File(s)
12274_2018_2016_MOESM1_ESM.pdf (6.1 MB)

References

1

Wang, Y. J.; Zhao, N. N.; Fang, B. Z.; Li, H.; Bi, X. T. T.; Wang, H. J. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433-3467.

2

Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594-3657.

3

Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848-1857.

4

You, H. J.; Yang, S. C.; Ding, B. J.; Yang, H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem. Soc. Rev. 2013, 42, 2880-2904.

5

Furukawa, S.; Komatsu, T. Intermetallic compounds: Promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal. 2017, 7, 735-765.

6

Bing, Y. H.; Liu, H. S.; Zhang, L.; Ghosh, D.; Zhang, J. J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 2010, 39, 2184-2202.

7

Watanabe, M.; Tsurumi, K.; Mizukami, T.; Nakamura, T.; Stonehart, P. Activity and stability of ordered and disordered Co-Pt alloys for phosphoric-acid fuel-cells. J. Electrochem. Soc. 1994, 141, 2659-2668.

8

Wu, J. F.; Yuan, X. Z.; Martin, J. J.; Wang, H. J.; Zhang, J. J.; Shen, J.; Wu, S. H.; Merida, W. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. J. Power Sources 2008, 184, 104-119.

9

Yan, Y. C.; Du, J. S. S.; Gilroy, K. D.; Yang, D. R.; Xia, Y. N.; Zhang, H. Intermetallic nanocrystals: Syntheses and catalytic applications. Adv. Mater. 2017, 29, 1605997.

10

Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410-1414.

11

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.

12

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230-1234.

13

Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414-1419.

14

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493-497.

15

Kang, Y. J.; Pyo, J. B.; Ye, X. C.; Gordon, T. R.; Murray, C. B. Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals. ACS Nano 2012, 6, 5642-5647.

16

Qi, Z. Y.; Xiao, C. X.; Liu, C.; Goh, T. W.; Zhou, L.; Maligal-Ganesh, R.; Pei, Y. C.; Li, X. L.; Curtiss, L. A.; Huang, W. Y. Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction. J. Am. Chem. Soc. 2017, 139, 4762-4768.

17

Xiao, C. X.; Maligal-Ganesh, R. V.; Li, T.; Qi, Z. Y.; Guo, Z. Y.; Brashler, K. T.; Goes, S.; Li, X. L.; Goh, T. W.; Winans, R. E. et al. High-temperature-stable and regenerable catalysts: Platinum nanoparticles in aligned mesoporous silica wells. ChemSusChem 2013, 6, 1915-1922.

18

Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat. Mater. 2009, 8, 126-131.

19

Pei, Y. C.; Maligal-Ganesh, R. V.; Xiao, C. X.; Goh, T. W.; Brashler, K.; Gustafson, J. A.; Huang, W. Y. An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures. Nanoscale 2015, 7, 16721-16728.

20

Maligal-Ganesh, R. V.; Xiao, C. X.; Goh, T. W.; Wang, L. L.; Gustafson, J.; Pei, Y. C.; Qi, Z. Y.; Johnson, D. D.; Zhang, S. R.; Tao, F. et al. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: Exemplified for furfural hydrogenation. ACS Catal. 2016, 6, 1754-1763.

21

Li, X. L.; Goh, T. W.; Xiao, C. X.; Stanton, A. L. D.; Pei, Y. C.; Jain, P. K.; Huang, W. Y. Synthesis of monodisperse palladium nanoclusters using metal-organic frameworks as sacrificial templates. ChemNanoMat 2016, 2, 810-815.

22

Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem., Int. Ed. 2016, 55, 3685-3689.

23

Li, X. L.; Goh, T. W.; Li, L.; Xiao, C. X.; Guo, Z. Y.; Zeng, X. C.; Huang, W. Y. Controlling catalytic properties of Pd nanoclusters through their chemical environment at the atomic level using isoreticular metal-organic frameworks. ACS Catal. 2016, 6, 3461-3468.

24

Li, X. L.; Van Zeeland, R.; Maligal-Ganesh, R. V.; Pei, Y. C.; Power, G.; Stanley, L.; Huang, W. Y. Impact of linker engineering on the catalytic activity of metal-organic frameworks containing Pd(Ⅱ)-bipyridine complexes. ACS Catal. 2016, 6, 6324-6328.

25

Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310-316.

26

Zhu, Q. L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev. 2014, 43, 5468-5512.

27

Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

28

Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390-5391.

29

Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660-12668.

30

You, B.; Jiang, N.; Sheng, M. L.; Drisdell, W. S.; Yano, J.; Sun, Y. J. Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 2015, 5, 7068-7076.

31

Xu, Y. T.; Xiao, X. F.; Ye, Z. M.; Zhao, S. L.; Shen, R. G.; He, C. T.; Zhang, J. P.; Li, Y. D.; Chen, X. M. Cage- confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 5285-5288.

32

Pei, Y. C.; Qi, Z. Y.; Li, X. L.; Maligal-Ganesh, R. V.; Goh, T. W.; Xiao, C. X.; Wang, T. Y.; Huang, W. Y. Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts. J. Mater. Chem. A 2017, 5, 6186-6192.

33

Li, X. L.; Zhang, B. Y.; Fang, Y. H.; Sun, W. J.; Qi, Z. Y.; Pei, Y. C.; Qi, S. Y.; Yuan, P. Y.; Luan, X. C.; Goh, T. W. et al. Metal-organic-framework-derived carbons: Applications as solid-base catalyst and support for Pd nanoparticles in tandem catalysis. Chem. -Eur. J. 2017, 23, 4266-4270.

34

Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774-4808.

35

Ji, S. F.; Chen, Y. J.; Fu, Q.; Chen, Y. F.; Dong, J. C.; Chen, W. X.; Li, Z.; Wang, Y.; Gu, L.; He, W. et al. Confined pyrolysis within metal-organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 2017, 139, 9795-9798.

36

Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937-6941.

37

Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010-5016.

38

Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energ. Environ. Sci. 2015, 8, 1837-1866.

39

Zhang, W.; Wu, Z. Y.; Jiang, H. L.; Yu, S. H. Nanowire- directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 2014, 136, 14385-14388.

40

Teranishi, T.; Hosoe, M.; Tanaka, T.; Miyake, M. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J. Phys. Chem. B 1999, 103, 3818-3827.

41

Song, H.; Rioux, R. M.; Hoefelmeyer, J. D.; Komor, R.; Niesz, K.; Grass, M.; Yang, P. D.; Somorjai, G. A. Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: Synthesis, characterization, and catalytic properties. J. Am. Chem. Soc. 2006, 128, 3027-3037.

42

Pei, Y. C.; Xiao, C. X.; Goh, T. W.; Zhang, Q. H.; Goes, S. N.; Sun, W. J.; Huang, W. Y. Tuning surface properties of amino-functionalized silica for metal nanoparticle loading: The vital role of an annealing process. Surf. Sci. 2016, 648, 299-306.

43

Jana, N. R.; Gearheart, L.; Murphy, C. J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir 2001, 17, 6782-6786.

44

Li, Y.; Boone, E.; El-Sayed, M. A. Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution. Langmuir 2002, 18, 4921-4925.

45

Massalski, T. B.; Okamoto, H.; Subramanian, P. R.; Kacprzak, L. Binary Alloy Phase Diagrams, 2nd ed.; ASM International: Ohio, 1990.

46

Rösler, C.; Fischer, R. A. Metal-organic frameworks as hosts for nanoparticles. Crystengcomm 2015, 17, 199-217.

47

Stephenson, C. J.; Hupp, J. T.; Farha, O. K. Pt@ZIF-8 composite for the regioselective hydrogenation of terminal unsaturations in 1, 3-dienes and alkynes. Inorg. Chem. Front. 2015, 2, 448-452.

48

Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186-10191.

49

Jiang, H. L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: Co oxidation over gold nanoparticles deposited to metal-organic framework. J. Am. Chem. Soc. 2009, 131, 11302-11303.

50

Zhou, H. R.; Yang, X. F.; Li, L.; Liu, X. Y.; Huang, Y. Q.; Pan, X. L.; Wang, A. Q.; Li, J.; Zhang, T. PdZn intermetallic nanostructure with Pt-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal. 2016, 6, 1054-1061.

51

Iihama, S.; Furukawa, S.; Komatsu, T. Efficient catalytic system for chemoselective hydrogenation of halonitrobenzene to haloaniline using PtZn intermetallic compound. ACS Catal. 2016, 6, 742-746.

52

Furukawa, S.; Yoshida, Y.; Komatsu, T. Chemoselective hydrogenation of nitrostyrene to aminostyrene over Pd- and Rh-based intermetallic compounds. ACS Catal. 2014, 4, 1441-1450.

53

Du, X. X.; He, Y.; Wang, X. X.; Wang, J. N. Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability. Energy Environ. Sci. 2016, 9, 2623-2632.

54

Cui, Z. M.; Chen, H.; Zhou, W. D.; Zhao, M. T.; DiSalvo, F. J. Structurally ordered Pt3Cr as oxygen reduction electrocatalyst: Ordering control and origin of enhanced stability. Chem. Mater. 2015, 27, 7538-7545.

55

Shim, J.; Lee, J.; Ye, Y.; Hwang, J.; Kim, S. K.; Lim, T. H.; Wiesner, U.; Lee, J. One-pot synthesis of intermetallic electrocatalysts in ordered, large-pore mesoporous carbon/silica toward formic acid oxidation. ACS Nano 2012, 6, 6870-6881.

56

Chung, D. Y.; Jun, S. W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H.; Chung, Y. H.; Kim, H. et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 15478-15485.

57

Magno, L. M.; Sigle, W.; van Aken, P. A.; Angelescu, D.; Stubenrauch, C. Size control of PtPb intermetallic nanoparticles prepared via microemulsions. Phys. Chem. Chem. Phys. 2011, 13, 9134-9136.

Nano Research
Pages 3469-3479
Cite this article:
Qi Z, Pei Y, Goh TW, et al. Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis. Nano Research, 2018, 11(6): 3469-3479. https://doi.org/10.1007/s12274-018-2016-x
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return