AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Facile fabrication of PdRuPt nanowire networks with tunable compositions as efficient methanol electrooxidation catalysts

Changshuai Shang1,2Yaxiao Guo1,2Erkang Wang1,2( )
State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
University of Chinese Academy of SciencesBeijing100049China
Show Author Information

Graphical Abstract

Abstract

The preparation of nanomaterials with superior catalytic properties through simple and rapid protocols is a task of great importance. In the present study, we demonstrate the direct synthesis of trimetallic PdRuPt nanowire networks through the reduction of the corresponding metal precursors with NaBH4, in the presence of KBr and polyvinylpyrrolidone (PVP). The elemental composition of the final products could be easily tuned by varying the added amounts of metal precursors. The obtained nanomaterials were then used as catalysts for methanol electrooxidation in an acidic medium. Among the synthesized PdRuPt and PtPd nanowire networks, Pd0.97Ru0.44Pt exhibits the highest catalytic activity and durability, along with a specific activity 3.5 times higher than that of commercial Pt/C. The enhanced catalytic properties of the present nanowiresystems are attributed to their unique structures and the introduction of Ru into PtPd nanocrystals with outstanding properties.

Electronic Supplementary Material

Download File(s)
12274_2018_2022_MOESM1_ESM.pdf (1.4 MB)

References

1

Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721.

2

Shang, C. S.; Hong, W.; Guo, Y. X.; Wang, J.; Wang, E. K. Water-based synthesis of palladium trigonal bipyramidal/tetrahedral nanocrystals with enhanced electrocatalytic oxidation activity. Chem—Eur. J. 2017, 23, 5799–5803.

3

Zhai, Y. M.; DuChene, J. S.; Wang, Y. -C.; Qiu, J. J.; Johnston-Peck, A. C.; You, B.; Guo, W. X.; DiCiaccio, B.; Qian, K.; Zhao, E. W. et al. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis. Nat. Mater. 2016, 15, 889–895.

4

Lopez-Sanchez, J. A.; Dimitratos, N.; Hammond, C.; Brett, G. L.; Kesavan, L.; White, S.; Miedziak, P.; Tiruvalam, R.; Jenkins, R. L.; Carley, A. F. et al. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat. Chem. 2011, 3, 551–556.

5

Hong, W.; Shang, C. S.; Wang, J.; Wang, E. K. Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ. Sci. 2015, 8, 2910–2915.

6

Guo, S. J.; Dong, S. J.; Wang, E. K. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 2010, 4, 547–555.

7

Zhou, L. -N.; Zhang, X. -T.; Wang, Z. -H.; Guo, S. J.; Li, Y. -J. Cubic superstructures composed of PtPd alloy nanocubes and their enhanced electrocatalysis for methanol oxidation. Chem. Commun. 2016, 52, 12737–12740.

8

Qiu, P. T.; Lian, S. M.; Yang, G.; Yang, S. C. Halide ion-induced formation of single crystalline mesoporous PtPd bimetallic nanoparticles with hollow interiors for electrochemical methanol and ethanol oxidation reaction. Nano Res. 2017, 10, 1064–1077.

9

Chen, M.; Wu, B. H.; Yang, J.; Zheng, N. F. Small adsorbate-assisted shape control of Pd and Pt nanocrystals. Adv. Mater. 2012, 24, 862–879.

10

Gilroy, K. D.; Ruditskiy, A.; Peng, H. -C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

11

Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

12

Liu, H. -L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078.

13

Tang, Y.; Cheng, W. L. Key parameters governing metallic nanoparticle electrocatalysis. Nanoscale 2015, 7, 16151–16164.

14

Liu, T. Y.; Wang, K.; Yuan, Q.; Shen, Z. B.; Wang, Y.; Zhang, Q. H.; Wang, X. Monodispersed sub-5.0 nm PtCu nanoalloys as enhanced bifunctional electrocatalysts for oxygen reduction reaction and ethanol oxidation reaction. Nanoscale 2017, 9, 2963–2968.

15

Zhu, C. Z.; Du, D.; Eychmüller, A.; Lin, Y. H. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 2015, 115, 8896–8943.

16

Zhu, C. Z.; Shi, Q. R.; Fu, S. F.; Song, J. H.; Xia, H. B.; Du, D.; Lin, Y. H. Efficient synthesis of MCu (M = Pd, Pt, and Au) aerogels with accelerated gelation kinetics and their high electrocatalytic activity. Adv. Mater. 2016, 28, 8779–8783.

17

Yang, X.; Roling, L. T.; Vara, M.; Elnabawy, A. O.; Zhao, M.; Hood, Z. D.; Bao, S. X.; Mavrikakis, M.; Xia, Y. N. Synthesis and characterization of Pt–Ag alloy nanocages with enhanced activity and durability toward oxygen reduction. Nano Lett. 2016, 16, 6644–6649.

18

Zhao, W. -Y.; Ni, B.; Yuan, Q.; He, P. -L.; Gong, Y.; Gu, L.; Wang, X. Highly active and durable Pt72Ru28 porous nanoalloy assembled with sub-4.0 nm particles for methanol oxidation. Adv. Energy Mater. 2017, 7, 1601593.

19

Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nat. Commun. 2015, 6, 10035.

20

Spendelow, J. S.; Wieckowski, A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys. Chem. Chem. Phys. 2007, 9, 2654–2675.

21

Xiao, M. L.; Li, S. T.; Zhao, X.; Zhu, J. B.; Yin, M.; Liu, C. P.; Xing, W. Enhanced catalytic performance of composition-tunable PtCu nanowire networks for methanol electrooxidation. ChemCatChem 2014, 6, 2825–2831.

22

Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C. P.; Liao, J. H.; Lu, T. H.; Xing, W. Recent advances in catalysts for direct methanol fuel cells. Energy Environ. Sci. 2011, 4, 2736–2753.

23

Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.; Wang, H. J.; Wilkinson, D. P. A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 2006, 155, 95–110.

24

Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. N. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J. Am. Chem. Soc. 2011, 133, 6078–6089.

25

Lu, Y. Z.; Jiang, Y. Y.; Chen, W. Graphene nanosheet-tailored PtPd concave nanocubes with enhanced electrocatalytic activity and durability for methanol oxidation. Nanoscale 2014, 6, 3309–3315.

26

Huang, X. Q.; Zhang, H. H.; Guo, C. Y.; Zhou, Z. Y.; Zheng, N. F. Simplifying the creation of hollow metallic nanostructures: One-pot synthesis of hollow palladium/platinum single-crystalline nanocubes. Angew. Chem., Int. Ed. 2009, 48, 4808–4812.

27

Huang, X. Q.; Li, Y. J.; Li, Y. J.; Zhou, H. L.; Duan, X. F.; Huang, Y. Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties. Nano Lett. 2012, 12, 4265–4270.

28

Lu, Y. Z.; Jiang, Y. Y.; Chen, W. PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction. Nano Energy 2013, 2, 836–844.

29

Cho, K. Y.; Yeom, Y. S.; Seo, H. Y.; Kumar, P.; Lee, A. S.; Baek, K. -Y.; Yoon, H. G. Molybdenum-doped PdPt@Pt core–shell octahedra supported by ionic block copolymer-functionalized graphene as a highly active and durable oxygen reduction electrocatalyst. ACS Appl. Mater. Interfaces 2017, 9, 1524–1535.

30

Zhang, J. F.; Wan, L.; Liu, L.; Deng, Y. D.; Zhong, C.; Hu, W. B. PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities. Nanoscale 2016, 8, 3962–3972.

31

Lu, Q. Q.; Wang, H. J.; Eid, K.; Alothman, Z. A.; Malgras, V.; Yamauchi, Y.; Wang, L. Synthesis of hollow platinum–palladium nanospheres with a dendritic shell as efficient electrocatalysts for methanol oxidation. Chem. Asian J. 2016, 11, 1939–1944.

32

Chen, Z. W.; Waje, M.; Li, W. Z.; Yan, Y. S. Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem., Int. Ed. 2007, 46, 4060–4063.

33

Liu, W.; Haubold, D.; Rutkowski, B.; Oschatz, M.; Hübner, R.; Werheid, M.; Ziegler, C.; Sonntag, L.; Liu, S. H.; Zheng, Z. K. et al. Self-supporting hierarchical porous PtAg alloy nanotubular aerogels as highly active and durable electrocatalysts. Chem. Mater. 2016, 28, 6477–6483.

34

Hong, W.; Wang, J.; Wang, E. K. RuTe/M (M = Pt, Pd) nanoparticle nanotubes with enhanced electrocatalytic activity. J. Mater. Chem. A 2015, 3, 13642–13647.

35

Kong, X. K.; Xu, K.; Zhang, C. L.; Dai, J.; Norooz Oliaee, S.; Li, L. Y.; Zeng, X. C.; Wu, C. Z.; Peng, Z. M. Free-standing two-dimensional Ru nanosheets with high activity toward water splitting. ACS Catal. 2016, 6, 1487–1492.

36

Niu, Z. Q.; Wang, D. S.; Yu, R.; Peng, Q.; Li, Y. D. Highly branched Pt-Ni nanocrystals enclosed by stepped surface for methanol oxidation. Chem. Sci. 2012, 3, 1925–1929.

37

Zhao, M.; Figueroa-Cosme, L.; Elnabawy, A. O.; Vara, M.; Yang, X.; Roling, L. T.; Chi, M. F.; Mavrikakis, M.; Xia, Y. N. Synthesis and characterization of Ru cubic nanocages with a face-centered cubic structure by templating with Pd nanocubes. Nano Lett. 2016, 16, 5310–5317.

38

Qin, Y. C.; Zhang, X.; Dai, X. P.; Sun, H.; Yang, Y.; Li, X. S.; Shi, Q. X.; Gao, D. W.; Wang, H.; Yu, N. -F. et al. Graphene oxide-assisted synthesis of Pt–Co alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Small 2016, 12, 524–533.

39

Hong, W.; Wang, J.; Wang, E. K. Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation. ACS Appl. Mater. Interfaces 2014, 6, 9481–9487.

40

Shang, C. S.; Hong, W.; Guo, Y. X.; Wang, J.; Wang, E. K. One-step synthesis of platinum nanochain networks toward methanol electrooxidation. ChemElectroChem 2016, 3, 2093–2099.

41

Garsany, Y.; Baturina, O. A.; Swider-Lyons, K. E.; Kocha, S. S. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 2010, 82, 6321–6328.

42

Hong, W.; Shang, C. S.; Wang, J.; Wang, E. K. Trimetallic PtCuCo hollow nanospheres with a dendritic shell for enhanced electrocatalytic activity toward ethylene glycol electrooxidation. Nanoscale 2015, 7, 9985–9989.

43

Hong, W.; Wang, J.; Wang, E. K. Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity. Nano Res. 2015, 8, 2308–2316.

44

Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

Nano Research
Pages 4348-4355
Cite this article:
Shang C, Guo Y, Wang E. Facile fabrication of PdRuPt nanowire networks with tunable compositions as efficient methanol electrooxidation catalysts. Nano Research, 2018, 11(8): 4348-4355. https://doi.org/10.1007/s12274-018-2022-z

667

Views

45

Crossref

N/A

Web of Science

44

Scopus

2

CSCD

Altmetrics

Received: 20 November 2017
Revised: 22 January 2018
Accepted: 11 February 2018
Published: 20 March 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return