AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dual confinement of polysulfides in boron-doped porous carbon sphere/graphene hybrid for advanced Li-S batteries

Wei Ai1,2,§Jiewei Li1,§Zhuzhu Du1Chenji Zou2Hongfang Du2,4Xin Xu2Yu Chen2Hongbo Zhang2Jianfeng Zhao1Changming Li4Wei Huang1,3( )Ting Yu2( )
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University (NanjingTech) 30 South Puzhu RoadNanjing211816China
Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University 50 Nanyang AvenueSingapore637371Singapore
Shaanxi Institute of Flexible Electronics (SIFE) Northwestern Polytechnical University (NPU) 127 West Youyi RoadXi’an710072China
Institute for Clean Energy & Advanced Materials Southwest UniversityChongqing400715China

§ Wei Ai and Jiewei Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

A hybrid structure consisting of boron-doped porous carbon spheres and graphene (BPCS-G) has been designed and synthesized toward solving the polysulfide-shuttle problem, which is the most critical issue of current Li-S batteries. The proposed hybrid structure showing high surface area (870 m2·g-1) and high B-dopant content (6.51 wt.%) simultaneously offers both physical confinement and chemical absorption of polysulfides. On one hand, the abundant-pore structure ensures high sulfur loading, facilitates fast charge transfer, and restrains polysulfide migration during cycling. On the other hand, our density functional theory calculations demonstrate that the B dopant is capable of chemically binding polysulfides. As a consequence of such dual polysulfide confinement, the BPCS-G/S cathode prepared with 70 wt.% sulfur loading presents a high reversible capacity of 1, 174 mAh·g-1 at 0.02 C, a high rate capacity of 396 mAh·g-1 at 5 C, and good cyclability over 500 cycles with only 0.05% capacity decay per cycle. The present work provides an efficient and cost-effective platform for the scalable synthesis of high-performance carbon-based materials for advanced Li-S batteries.

Electronic Supplementary Material

Download File(s)
12274_2018_2036_MOESM1_ESM.pdf (2.2 MB)

References

1

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. -M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

2

Manthiram, A.; Fu, Y. Z.; Chung, S. -H.; Zu, C. X.; Su, Y. -S. Rechargeable lithium–sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

3

Goodenough, J. B. Energy storage materials: A perspective. Energy Storage Mater. 2015, 1, 158–161.

4

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

5

Manthiram, A.; Chung, S. -H.; Zu, C. X. Lithium–sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.

6

Rosenman, A.; Markevich, E.; Salitra, G.; Aurbach, D.; Garsuch, A.; Chesneau, F. F. Review on Li-sulfur battery systems: An integral perspective. Adv. Energy Mater. 2015, 5, 1500212.

7

Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 2015, 5, 1500408.

8

Titirici, M. -M.; White, R. J.; Brun, N.; Budarin, V. L.; Su, D. S.; del Monte, F.; Clark, J. H.; MacLachlan, M. J. Sustainable carbon materials. Chem. Soc. Rev. 2015, 44, 250–290.

9

Liang, J.; Sun, Z. -H.; Li, F.; Cheng, H. -M. Carbon materials for Li–S batteries: Functional evolution and performance improvement. Energy Storage Mater. 2016, 2, 76–106.

10

Wang, J. L.; He, Y. -S.; Yang, J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Adv. Mater. 2015, 27, 569–575.

11

Wang, J. L.; Yang, J.; Xie, J. Y.; Xu, N. X.; Li, Y. Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem. Commun. 2002, 4, 499–502.

12

Wang, J. L.; Liu, L.; Ling, Z. J.; Yang, J.; Wan, C. R.; Jiang, C. Y. Polymer lithium cells with sulfur composites as cathode materials. Electrochim. Acta 2003, 48, 1861–1867.

13

Wang, D. -W.; Zeng, Q. C.; Zhou, G. M.; Yin, L. C.; Li, F.; Cheng, H. -M.; Gentle, I. R.; Lu, G. Q. M. Carbon-sulfur composites for Li-S batteries: Status and prospects. J. Mater. Chem. A 2013, 1, 9382–9394.

14

Evers, S.; Nazar, L. F. New approaches for high energy density lithium–sulfur battery cathodes. Acc. Chem. Res. 2013, 46, 1135–1143.

15

Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.

16

Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium–sulfur batteries. Adv. Mater. 2015, 27, 6021–6028.

17

Su, D. W.; Cortie, M.; Wang, G. X. Fabrication of N-doped graphene–carbon nanotube hybrids from Prussian blue for lithium–sulfur batteries. Adv. Energy Mater. 2017, 7, 1602014.

18

Zhang, C.; Lv, W.; Zhang, W. G.; Zheng, X. Y.; Wu, M. -B.; Wei, W.; Tao, Y.; Li, Z. J.; Yang, Q. -H. Reduction of graphene oxide by hydrogen sulfide: A promising strategy for pollutant control and as an electrode for Li-S batteries. Adv. Energy Mater. 2014, 4, 1301565.

19

Radovic, L. R.; Karra, M.; Skokova, K.; Thrower, P. A. The role of substitutional boron in carbon oxidation. Carbon 1998, 36, 1841–1854.

20

Yang, C. -P.; Yin, Y. -X.; Ye, H.; Jiang, K. -C.; Zhang, J.; Guo, Y. -G. Insight into the effect of boron doping on sulfur/carbon cathode in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2014, 6, 8789–8795.

21

Xie, Y.; Meng, Z.; Cai, T. W.; Han, W. -Q. Effect of borondoping on the graphene aerogel used as cathode for the lithium–sulfur battery. ACS Appl. Mater. Interfaces 2015, 7, 25202–25210.

22

Jin, C. B.; Zhang, W. K.; Zhuang, Z. Z.; Wang, J. G.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C.; Zhang, J.; Tao, X. Y. Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 632–640.

23

Wu, F.; Qian, J.; Wu, W. P.; Ye, Y. S.; Sun, Z. G.; Xu, B.; Yang, X. G.; Xu, Y. H.; Zhang, J. T.; Chen, R. J. Boron-doped microporous nano carbon as cathode material for highperformance Li-S batteries. Nano Res. 2017, 10, 426–436.

24

Wu, F.; Qian, J.; Chen, R. J.; Ye, Y. S.; Sun, Z. G.; Xing, Y.; Li, L. Light-weight functional layer on a separator as a polysulfide immobilizer to enhance cycling stability for lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 17033–17041.

25

Paraknowitsch, J. P.; Thomas, A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 2013, 6, 2839–2855.

26

Kicinski, W.; Szala, M.; Bystrzejewski, M. Sulfur-doped porous carbons: Synthesis and applications. Carbon 2014, 68, 1–32.

27

Ai, W.; Luo, Z. M.; Jiang, J.; Zhu, J. H.; Du, Z. Z.; Fan, Z. X.; Xie, L. H.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and sulfur codoped graphene: Multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv. Mater. 2014, 26, 6186–6192.

28

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 09, Revision A. 02; Gaussian, Inc: Wallingford, CT, 2016.

29

Dogru, M.; Bein, T. On the road towards electroactive covalent organic frameworks. Chem. Commun. 2014, 50, 5531–5546.

30

Yang, L. J.; Jiang, S. J.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X. Z.; Wu, Q.; Ma, J.; Ma, Y. W.; Hu, Z. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2011, 50, 7132–7135.

31

Ai, W.; Jiang, J.; Zhu, J. H.; Fan, Z. X.; Wang, Y. L.; Zhang, H.; Huang, W.; Yu, T. Supramolecular polymerization promoted in situ fabrication of nitrogen-doped porous graphene sheets as anode materials for Li-ion batteries. Adv. Energy Mater. 2015, 5, 1500559.

32

Qie, L.; Chen, W. -M.; Wang, Z. -H.; Shao, Q. -G.; Li, X.; Yuan, L. -X.; Hu, X. -L.; Zhang, W. -X.; Huang, Y. -H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050.

33

Xin, S.; Gu, L.; Zhao, N. -H.; Yin, Y. -X.; Zhou, L. -J.; Guo, Y. -G.; Wan, L. -J. Smaller sulfur molecules promise better lithium–sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510–18513.

34

Zhang, J. H.; Huang, M.; Xi, B. J.; Mi, K.; Yuan, A. H.; Xiong, S. L. Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1701330.

35

Zhang, J.; Yang, C. -P.; Yin, Y. -X.; Wan, L. -J.; Guo, Y. -G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium–sulfur batteries. Adv. Mater. 2016, 28, 9539–9544.

36

Ai, W.; Zhou, W. W.; Du, Z. Z.; Sun, C. C.; Yang, J.; Chen, Y.; Sun, Z. P.; Feng, S.; Zhao, J. F.; Dong, X. C. et al. Toward high energy organic cathodes for Li-ion batteries: A case study of vat dye/graphene composites. Adv. Funct. Mater. 2017, 27, 1603603.

37

Rehman, S.; Gu, X. X.; Khan, K.; Mahmood, N.; Yang, W. L.; Huang, X. X.; Guo, S. J.; Hou, Y. L. 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium-sulfur batteries. Adv. Energy Mater. 2016, 6, 1502518.

38

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

39

Zhao, Y.; Wu, W. L.; Li, J. X.; Xu, Z. C.; Guan, L. H. Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv. Mater. 2014, 26, 5113–5118.

40

Ai, W.; Zhou, W. W.; Du, Z. Z.; Chen, Y.; Sun, Z. P.; Wu, C.; Zou, C. J.; Li, C. M.; Huang, W.; Yu, T. Nitrogen and phosphorus codoped hierarchically porous carbon as an efficient sulfur host for Li-S batteries. Energy Storage Mater. 2017, 6, 112–118.

41

Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462–4467.

42

Ji, L. W.; Rao, M. M.; Aloni, S.; Wang, L.; Cairns, E. J.; Zhang, Y. G. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 2011, 4, 5053–5059.

43

Jiang, J.; Zhu, J. H.; Ai, W.; Wang, X. L.; Wang, Y. L.; Zou, C. J.; Huang, W.; Yu, T. Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium-sulfur cells. Nat. Commun. 2015, 6, 8622.

44

Ghazi, Z. A.; Zhu, L. Y.; Wang, H.; Naeem, A.; Khattak, A. M.; Liang, B.; Khan, N. A.; Wei, Z. X.; Li, L. S.; Tang, Z. Y. Efficient polysulfide chemisorption in covalent organic frameworks for high-performance lithium-sulfur batteries. Adv. Energy Mater. 2016, 6, 1601250.

45

Cai, J. J.; Wu, C.; Yang, S. R.; Zhu, Y.; Shen, P. K.; Zhang, K. L. Templated and catalytic fabrication of N-doped hierarchical porous carbon-carbon nanotube hybrids as host for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 33876–33886.

46

Wang, H. -F.; Fan, C. -Y.; Li, X. -Y.; Wu, X. -L.; Li, H. -H.; Sun, H. -Z.; Xie, H. -M.; Zhang, J. -P.; Tong, C. -Y. Fabrication of boron-doped porous carbon with termite nest shape via natural macromolecule and borax to obtain lithium-sulfur/sodium-ion batteries with improved rate performance. Electrochim. Acta 2017, 244, 86–95.

47

Peng, Y. Y.; Zhang, Y. Y.; Huang, J. X.; Wang, Y. H.; Li, H.; Hwang, B. J.; Zhao, J. B. Nitrogen and oxygen dual-doped hollow carbon nanospheres derived from catechol/polyamine as sulfur hosts for advanced lithium sulfur batteries. Carbon 2017, 124, 23–33.

48

Ji, S. N.; Imtiaz, S.; Sun, D.; Xin, Y.; Li, Q.; Huang, T. Z.; Zhang, Z. L.; Huang, Y. H. Coralline-like N-doped hierarchically porous carbon derived from enteromorpha as a host matrix for lithium-sulfur battery. Chem. -Eur. J. 2017, 23, 18208–18215.

49

Zhang, Z.; Kong, L. -L.; Liu, S.; Li, G. -R.; Gao, X. -P. A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium–sulfur battery. Adv. Energy Mater. 2017, 7, 1602543.

50

Xiao, D. L.; Lu, C. X.; Chen, C. M.; Yuan, S. X. CeO2-webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries. Energy Storage Mater. 2018, 10, 216–222.

51

Pang, Y.; Wen, Y. P.; Li, W. Y.; Sun, Y. H.; Zhu, T. C.; Wang, Y. G.; Xia, Y. Y. A sulfur-FePO4-C nanocomposite cathode for stable and anti-self-discharge lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 17926–17932.

52

Rehman, S.; Tang, T. Y.; Ali, Z.; Huang, X. X.; Hou, Y. L. Integrated design of MnO2@carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small 2017, 13, 1700087.

53

Huang, X. K.; Shi, K. Y.; Yang, J.; Mao, G.; Chen, J. H. MnO2-GO double-shelled sulfur (S@MnO2@GO) as a cathode for Li-S batteries with improved rate capability and cyclic performance. J. Power Sources 2017, 356, 72–79.

Nano Research
Pages 4562-4573
Cite this article:
Ai W, Li J, Du Z, et al. Dual confinement of polysulfides in boron-doped porous carbon sphere/graphene hybrid for advanced Li-S batteries. Nano Research, 2018, 11(9): 4562-4573. https://doi.org/10.1007/s12274-018-2036-6

709

Views

58

Crossref

N/A

Web of Science

56

Scopus

5

CSCD

Altmetrics

Received: 13 September 2017
Revised: 01 February 2018
Accepted: 11 February 2018
Published: 20 March 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return