Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A hybrid structure consisting of boron-doped porous carbon spheres and graphene (BPCS-G) has been designed and synthesized toward solving the polysulfide-shuttle problem, which is the most critical issue of current Li-S batteries. The proposed hybrid structure showing high surface area (870 m2·g-1) and high B-dopant content (6.51 wt.%) simultaneously offers both physical confinement and chemical absorption of polysulfides. On one hand, the abundant-pore structure ensures high sulfur loading, facilitates fast charge transfer, and restrains polysulfide migration during cycling. On the other hand, our density functional theory calculations demonstrate that the B dopant is capable of chemically binding polysulfides. As a consequence of such dual polysulfide confinement, the BPCS-G/S cathode prepared with 70 wt.% sulfur loading presents a high reversible capacity of 1, 174 mAh·g-1 at 0.02 C, a high rate capacity of 396 mAh·g-1 at 5 C, and good cyclability over 500 cycles with only 0.05% capacity decay per cycle. The present work provides an efficient and cost-effective platform for the scalable synthesis of high-performance carbon-based materials for advanced Li-S batteries.
Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. -M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.
Manthiram, A.; Fu, Y. Z.; Chung, S. -H.; Zu, C. X.; Su, Y. -S. Rechargeable lithium–sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.
Goodenough, J. B. Energy storage materials: A perspective. Energy Storage Mater. 2015, 1, 158–161.
Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.
Manthiram, A.; Chung, S. -H.; Zu, C. X. Lithium–sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.
Rosenman, A.; Markevich, E.; Salitra, G.; Aurbach, D.; Garsuch, A.; Chesneau, F. F. Review on Li-sulfur battery systems: An integral perspective. Adv. Energy Mater. 2015, 5, 1500212.
Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 2015, 5, 1500408.
Titirici, M. -M.; White, R. J.; Brun, N.; Budarin, V. L.; Su, D. S.; del Monte, F.; Clark, J. H.; MacLachlan, M. J. Sustainable carbon materials. Chem. Soc. Rev. 2015, 44, 250–290.
Liang, J.; Sun, Z. -H.; Li, F.; Cheng, H. -M. Carbon materials for Li–S batteries: Functional evolution and performance improvement. Energy Storage Mater. 2016, 2, 76–106.
Wang, J. L.; He, Y. -S.; Yang, J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Adv. Mater. 2015, 27, 569–575.
Wang, J. L.; Yang, J.; Xie, J. Y.; Xu, N. X.; Li, Y. Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem. Commun. 2002, 4, 499–502.
Wang, J. L.; Liu, L.; Ling, Z. J.; Yang, J.; Wan, C. R.; Jiang, C. Y. Polymer lithium cells with sulfur composites as cathode materials. Electrochim. Acta 2003, 48, 1861–1867.
Wang, D. -W.; Zeng, Q. C.; Zhou, G. M.; Yin, L. C.; Li, F.; Cheng, H. -M.; Gentle, I. R.; Lu, G. Q. M. Carbon-sulfur composites for Li-S batteries: Status and prospects. J. Mater. Chem. A 2013, 1, 9382–9394.
Evers, S.; Nazar, L. F. New approaches for high energy density lithium–sulfur battery cathodes. Acc. Chem. Res. 2013, 46, 1135–1143.
Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.
Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium–sulfur batteries. Adv. Mater. 2015, 27, 6021–6028.
Su, D. W.; Cortie, M.; Wang, G. X. Fabrication of N-doped graphene–carbon nanotube hybrids from Prussian blue for lithium–sulfur batteries. Adv. Energy Mater. 2017, 7, 1602014.
Zhang, C.; Lv, W.; Zhang, W. G.; Zheng, X. Y.; Wu, M. -B.; Wei, W.; Tao, Y.; Li, Z. J.; Yang, Q. -H. Reduction of graphene oxide by hydrogen sulfide: A promising strategy for pollutant control and as an electrode for Li-S batteries. Adv. Energy Mater. 2014, 4, 1301565.
Radovic, L. R.; Karra, M.; Skokova, K.; Thrower, P. A. The role of substitutional boron in carbon oxidation. Carbon 1998, 36, 1841–1854.
Yang, C. -P.; Yin, Y. -X.; Ye, H.; Jiang, K. -C.; Zhang, J.; Guo, Y. -G. Insight into the effect of boron doping on sulfur/carbon cathode in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2014, 6, 8789–8795.
Xie, Y.; Meng, Z.; Cai, T. W.; Han, W. -Q. Effect of borondoping on the graphene aerogel used as cathode for the lithium–sulfur battery. ACS Appl. Mater. Interfaces 2015, 7, 25202–25210.
Jin, C. B.; Zhang, W. K.; Zhuang, Z. Z.; Wang, J. G.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C.; Zhang, J.; Tao, X. Y. Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 632–640.
Wu, F.; Qian, J.; Wu, W. P.; Ye, Y. S.; Sun, Z. G.; Xu, B.; Yang, X. G.; Xu, Y. H.; Zhang, J. T.; Chen, R. J. Boron-doped microporous nano carbon as cathode material for highperformance Li-S batteries. Nano Res. 2017, 10, 426–436.
Wu, F.; Qian, J.; Chen, R. J.; Ye, Y. S.; Sun, Z. G.; Xing, Y.; Li, L. Light-weight functional layer on a separator as a polysulfide immobilizer to enhance cycling stability for lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 17033–17041.
Paraknowitsch, J. P.; Thomas, A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 2013, 6, 2839–2855.
Kicinski, W.; Szala, M.; Bystrzejewski, M. Sulfur-doped porous carbons: Synthesis and applications. Carbon 2014, 68, 1–32.
Ai, W.; Luo, Z. M.; Jiang, J.; Zhu, J. H.; Du, Z. Z.; Fan, Z. X.; Xie, L. H.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and sulfur codoped graphene: Multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv. Mater. 2014, 26, 6186–6192.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 09, Revision A. 02; Gaussian, Inc: Wallingford, CT, 2016.
Dogru, M.; Bein, T. On the road towards electroactive covalent organic frameworks. Chem. Commun. 2014, 50, 5531–5546.
Yang, L. J.; Jiang, S. J.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X. Z.; Wu, Q.; Ma, J.; Ma, Y. W.; Hu, Z. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2011, 50, 7132–7135.
Ai, W.; Jiang, J.; Zhu, J. H.; Fan, Z. X.; Wang, Y. L.; Zhang, H.; Huang, W.; Yu, T. Supramolecular polymerization promoted in situ fabrication of nitrogen-doped porous graphene sheets as anode materials for Li-ion batteries. Adv. Energy Mater. 2015, 5, 1500559.
Qie, L.; Chen, W. -M.; Wang, Z. -H.; Shao, Q. -G.; Li, X.; Yuan, L. -X.; Hu, X. -L.; Zhang, W. -X.; Huang, Y. -H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050.
Xin, S.; Gu, L.; Zhao, N. -H.; Yin, Y. -X.; Zhou, L. -J.; Guo, Y. -G.; Wan, L. -J. Smaller sulfur molecules promise better lithium–sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510–18513.
Zhang, J. H.; Huang, M.; Xi, B. J.; Mi, K.; Yuan, A. H.; Xiong, S. L. Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1701330.
Zhang, J.; Yang, C. -P.; Yin, Y. -X.; Wan, L. -J.; Guo, Y. -G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium–sulfur batteries. Adv. Mater. 2016, 28, 9539–9544.
Ai, W.; Zhou, W. W.; Du, Z. Z.; Sun, C. C.; Yang, J.; Chen, Y.; Sun, Z. P.; Feng, S.; Zhao, J. F.; Dong, X. C. et al. Toward high energy organic cathodes for Li-ion batteries: A case study of vat dye/graphene composites. Adv. Funct. Mater. 2017, 27, 1603603.
Rehman, S.; Gu, X. X.; Khan, K.; Mahmood, N.; Yang, W. L.; Huang, X. X.; Guo, S. J.; Hou, Y. L. 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium-sulfur batteries. Adv. Energy Mater. 2016, 6, 1502518.
Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.
Zhao, Y.; Wu, W. L.; Li, J. X.; Xu, Z. C.; Guan, L. H. Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv. Mater. 2014, 26, 5113–5118.
Ai, W.; Zhou, W. W.; Du, Z. Z.; Chen, Y.; Sun, Z. P.; Wu, C.; Zou, C. J.; Li, C. M.; Huang, W.; Yu, T. Nitrogen and phosphorus codoped hierarchically porous carbon as an efficient sulfur host for Li-S batteries. Energy Storage Mater. 2017, 6, 112–118.
Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462–4467.
Ji, L. W.; Rao, M. M.; Aloni, S.; Wang, L.; Cairns, E. J.; Zhang, Y. G. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 2011, 4, 5053–5059.
Jiang, J.; Zhu, J. H.; Ai, W.; Wang, X. L.; Wang, Y. L.; Zou, C. J.; Huang, W.; Yu, T. Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium-sulfur cells. Nat. Commun. 2015, 6, 8622.
Ghazi, Z. A.; Zhu, L. Y.; Wang, H.; Naeem, A.; Khattak, A. M.; Liang, B.; Khan, N. A.; Wei, Z. X.; Li, L. S.; Tang, Z. Y. Efficient polysulfide chemisorption in covalent organic frameworks for high-performance lithium-sulfur batteries. Adv. Energy Mater. 2016, 6, 1601250.
Cai, J. J.; Wu, C.; Yang, S. R.; Zhu, Y.; Shen, P. K.; Zhang, K. L. Templated and catalytic fabrication of N-doped hierarchical porous carbon-carbon nanotube hybrids as host for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 33876–33886.
Wang, H. -F.; Fan, C. -Y.; Li, X. -Y.; Wu, X. -L.; Li, H. -H.; Sun, H. -Z.; Xie, H. -M.; Zhang, J. -P.; Tong, C. -Y. Fabrication of boron-doped porous carbon with termite nest shape via natural macromolecule and borax to obtain lithium-sulfur/sodium-ion batteries with improved rate performance. Electrochim. Acta 2017, 244, 86–95.
Peng, Y. Y.; Zhang, Y. Y.; Huang, J. X.; Wang, Y. H.; Li, H.; Hwang, B. J.; Zhao, J. B. Nitrogen and oxygen dual-doped hollow carbon nanospheres derived from catechol/polyamine as sulfur hosts for advanced lithium sulfur batteries. Carbon 2017, 124, 23–33.
Ji, S. N.; Imtiaz, S.; Sun, D.; Xin, Y.; Li, Q.; Huang, T. Z.; Zhang, Z. L.; Huang, Y. H. Coralline-like N-doped hierarchically porous carbon derived from enteromorpha as a host matrix for lithium-sulfur battery. Chem. -Eur. J. 2017, 23, 18208–18215.
Zhang, Z.; Kong, L. -L.; Liu, S.; Li, G. -R.; Gao, X. -P. A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium–sulfur battery. Adv. Energy Mater. 2017, 7, 1602543.
Xiao, D. L.; Lu, C. X.; Chen, C. M.; Yuan, S. X. CeO2-webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries. Energy Storage Mater. 2018, 10, 216–222.
Pang, Y.; Wen, Y. P.; Li, W. Y.; Sun, Y. H.; Zhu, T. C.; Wang, Y. G.; Xia, Y. Y. A sulfur-FePO4-C nanocomposite cathode for stable and anti-self-discharge lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 17926–17932.
Rehman, S.; Tang, T. Y.; Ali, Z.; Huang, X. X.; Hou, Y. L. Integrated design of MnO2@carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small 2017, 13, 1700087.
Huang, X. K.; Shi, K. Y.; Yang, J.; Mao, G.; Chen, J. H. MnO2-GO double-shelled sulfur (S@MnO2@GO) as a cathode for Li-S batteries with improved rate capability and cyclic performance. J. Power Sources 2017, 356, 72–79.