AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Emergence of photoluminescence on bulk MoS2 by laser thinning and gold particle decoration

Lili Gong1Qi Zhang1Liangjun Wang1Jianfeng Wu1Cheng Han1Bo Lei1Wei Chen1,2,3Goki Eda1,2,3Kuan Eng Johnson Goh4,1Chorng Haur Sow1,3( )
Department of Physics National University of SingaporeSingapore117542Singapore
Department of Chemistry National University of SingaporeSingapore117542Singapore
Centre for Advanced 2D Materials and Graphene Research Centre National University of Singapore 6 Science Drive 2Singapore117546Singapore
Institute of Materials Research and Engineering Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way Innovis #08-03Singapore138634Singapore
Show Author Information

Graphical Abstract

Abstract

We demonstrate a facile and effective approach to significantly improve the photoluminescence of bulk MoS2 via laser thinning followed by gold particle decoration. Upon laser thinning of exfoliated bulk MoS2, photoluminescence emerges from the laser-thinned region. After further treatment with an AuCl3 solution, gold particles self-assemble on the laser-thinned region and thick edges, further increasing the fluorescence of bulk MoS2 28 times and the Raman response 3 times. Such fluorescence enhancement can be attributed to both surface plasmon resonance and p-type doping induced by gold particles. The combination of laser thinning and AuCl3 treatment enables the functionalization of bulk MoS2 for optoelectronic applications. It can also provide a viable strategy for mask-free and area-selective p-type doping on single MoS2 flakes.

Electronic Supplementary Material

Download File(s)
12274_2018_2037_MOESM1_ESM.pdf (1.8 MB)

References

1

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

2

Yin, X. B.; Ye, Z. L.; Chenet, D. A.; Ye, Y.; O'Brien, K.; Hone, J. C.; Zhang, X. Edge nonlinear optics on a MoS2 atomic monolayer. Science 2014, 344, 488–490.

3

Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

4

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

5

Lim, Y. R.; Song, W.; Han, J. K.; Lee, Y. B.; Kim, S. J.; Myung, S.; Lee, S. S.; An, K. S.; Choi, C. J.; Lim, J. Waferscale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv. Mater. 2016, 28, 5025–5230.

6

Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; van der Zant, H. S. J.; Steele, G. A. Laserthinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 2012, 12, 3187–3192.

7

Lu, J. P.; Lu, J.; Liu, H. W.; Liu, B.; Chan, X. K.; Lin, J. D.; Chen, W. A.; Loh, K. P.; Sow, C. H. Improved photoelectrical properties of MoS2 films after laser micromachining. ACS Nano 2014, 8, 6334–6343.

8

Lu, J. P.; Carvalho, A.; Chan, X. K.; Liu, H. W.; Liu, B.; Tok, E. S.; Loh, K. P.; Castro Neto, A. H.; Sow, C. H. Atomic healing of defects in transition metal dichalcogenides. Nano Lett. 2015, 15, 3524–3532.

9

Kim, E.; Ko, C.; Kim, K.; Chen, Y. B.; Suh, J.; Ryu, S. G.; Wu, K. D.; Meng, X. Q.; Suslu, A.; Tongay, S. et al. Site selective doping of ultrathin metal dichalcogenides by laserassisted reaction. Adv. Mater. 2016, 28, 341–346.

10

Lin, J. D.; Li, H.; Zhang, H.; Chen, W. Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Appl. Phys. Lett. 2013, 102, 203109.

11

Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.

12

Zhao, W. J.; Wang, S. F.; Liu, B.; Verzhbitskiy, I.; Li, S. S.; Giustiniano, F.; Kozawa, D.; Loh, K. P.; Matsuda, K.; Okamoto, K. et al. Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles. Adv. Mater. 2016, 28, 2709–2715.

13

Najmaei, S.; Mlayah, A.; Arbouet, A.; Girard, C.; Léotin, J.; Lou, J. Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures. ACS Nano 2014, 8, 12682–12689.

14

Sobhani, A.; Lauchner, A.; Najmaei, S.; Ayala-Orozco, C.; Wen, F. F.; Lou, J.; Halas, N. J. Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl. Phys. Lett. 2014, 104, 031112.

15

Li, Z. W.; Xiao, Y. D.; Gong, Y. J.; Wang, Z. P.; Kang, Y. M.; Zu, S.; Ajayan, P. M.; Nordlander, P.; Fang, Z. Y. Active light control of the MoS2 monolayer exciton binding energy. ACS Nano 2015, 9, 10158–10164.

16

Li, Y.; Cain, J. D.; Hanson, E. D.; Murthy, A. A.; Hao, S. Q.; Shi, F. Y.; Li, Q. Q.; Wolverton, C.; Chen, X. Q.; Dravid, V. P. Au@ MoS2 core-shell heterostructures with strong light-matter interactions. Nano Lett. 2016, 16, 7696–7702.

17

Sreeprasad, T. S.; Nguyen, P.; Kim, N.; Berry, V. Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: Electrical, thermal, and structural properties. Nano Lett. 2013, 13, 4434–4441.

18

Choi, M. S.; Qu, D. S.; Lee, D.; Liu, X. C.; Watanabe, K.; Taniguchi, T.; Yoo, W. J. Lateral MoS2 p–n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano 2014, 8, 9332–9340.

19

Sarkar, D.; Xie, X. J.; Kang, J. H.; Zhang, H. J.; Liu, W.; Navarrete, J.; Moskovits, M.; Banerjee, K. Functionalization of transition metal dichalcogenides with metallic nanoparticles: Implications for doping and gas-sensing. Nano Lett. 2015, 15, 2852–2862.

20

Li, X. H.; Zhu, J. M.; Wei, B. Q. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem. Soc. Rev. 2016, 45, 3145–3187.

21

Shi, Y. M.; Huang, J. K.; Jin, L. M.; Hsu, Y. T.; Yu, S. F.; Li, L. J.; Yang, H. Y. Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Sci. Rep. 2013, 3, 1839.

22

Lu, J. P.; Lu, J. H.; Liu, H. W.; Liu, B.; Gong, L. L.; Tok, E. S.; Loh, K. P.; Sow, C. H. Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing. Small 2015, 11, 1792–1800.

23

Liu, Y. L.; Nan, H. Y.; Wu, X.; Pan, W.; Wang, W. H.; Bai, J.; Zhao, W. W.; Sun, L. T.; Wang, X. R.; Ni, Z. H. Layer-by-layer thinning of MoS2 by plasma. ACS Nano 2013, 7, 4202–4209.

24

Amara, K. K.; Chu, L. Q.; Kumar, R.; Toh, M.; Eda, G. Wet chemical thinning of molybdenum disulfide down to its monolayer. APL Mater. 2014, 2, 092509.

25

Ionescu, R.; George, A.; Ruiz, I.; Favors, Z.; Mutlu, Z.; Liu, C.; Ahmed, K.; Wu, R.; Jeong, J. S.; Zavala, L. et al. Oxygen etching of thick MoS2 films. Chem. Commun. 2014, 50, 11226–11229.

26

Sunamura, K.; Page, T. R.; Yoshida, K.; Yano, T.; Hayamizu, Y. Laser-induced electrochemical thinning of MoS2. J. Mater. Chem. C 2016, 4, 3268–3273.

27

Lu, X.; Utama, M. I. B.; Zhang, J.; Zhao, Y. Y.; Xiong, Q. H. Layer-by-layer thinning of MoS2 by thermal annealing. Nanoscale 2013, 5, 8904–8908.

28

Wang, D.; Wang, Y. Q.; Chen, X. D.; Zhu, Y. K.; Zhan, K.; Cheng, H. B.; Wang, X. Y. Layer-by-layer thinning of two-dimensional MoS2 films by using a focused ion beam. Nanoscale 2016, 8, 4107–4112.

29

Su, W. T.; Kumar, N.; Spencer, S. J.; Dai, N.; Roy, D. Transforming bilayer MoS2 into single-layer with strong photoluminescence using UV-ozone oxidation. Nano Res. 2015, 8, 3878–3886.

30

Li, H.; Wu, J.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Xiong, Q. H.; Zhang, H. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 2013, 7, 10344–10353.

31

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single-and fewlayer MoS2. ACS Nano 2010, 4, 2695–2700.

32

Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

33

Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

34

Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738–5745.

35

Lee, H. S.; Kim, M. S.; Kim, H.; Lee, Y. H. Identifying multiexcitons in MoS2 monolayers at room temperature. Phys. Rev. B 2016, 93, 140409.

36

Gwo, S.; Chen, H. Y.; Lin, M. H.; Sun, L. Y.; Li, X. Q. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics. Chem. Soc. Rev. 2016, 45, 5672–5716.

37

Kim, S. M.; Kim, K. K.; Jo, Y. W.; Park, M. H.; Chae, S. J.; Duong, D. L.; Yang, C. W.; Kong, J.; Lee, Y. H. Role of anions in the AuCl3-doping of carbon nanotubes. ACS Nano 2011, 5, 1236–1242.

38

Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275–6280.

39

Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons. Sci. Rep. 2013, 3, 2657.

40

Oh, H. M.; Han, G. H.; Kim, H.; Bae, J. J.; Jeong, M. S.; Lee, Y. H. Photochemical reaction in monolayer MoS2 via correlated photoluminescence, raman spectroscopy, and atomic force microscopy. ACS Nano 2016, 10, 5230–5236.

41

Sie, E. J.; Frenzel, A. J.; Lee, Y. H.; Kong, J.; Gedik, N. Intervalley biexcitons and many-body effects in monolayer MoS2. Phys. Rev. B 2015, 92, 125417.

42

Mai, C.; Barrette, A.; Yu, Y. F.; Semenov, Y. G.; Kim, K. W.; Cao, L. Y.; Gundogdu, K. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 2014, 14, 202–206.

43

Kümmell, T.; Quitsch, W.; Matthis, S.; Litwin, T.; Bacher, G. Gate control of carrier distribution in k-space in MoS2 monolayer and bilayer crystals. Phys. Rev. B 2015, 91, 125305.

Nano Research
Pages 4574-4586
Cite this article:
Gong L, Zhang Q, Wang L, et al. Emergence of photoluminescence on bulk MoS2 by laser thinning and gold particle decoration. Nano Research, 2018, 11(9): 4574-4586. https://doi.org/10.1007/s12274-018-2037-5

649

Views

30

Crossref

N/A

Web of Science

29

Scopus

1

CSCD

Altmetrics

Received: 11 December 2017
Revised: 11 February 2018
Accepted: 27 February 2018
Published: 16 March 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return