Graphical Abstract

Enabling Si photoanodes for efficient solar water oxidation would facilitate the development of solar fuel conversion, but it is challenging owing to Si surface passivation via photo-induced corrosion in aqueous electrolytes. To overcome this challenge, most approaches have focused on improving the stability of Si by coating dense and thin protective layers using high vacuum-based techniques such as atomic layer deposition. However, these procedures are costly, making scalability for practical applications difficult. Herein, we report a modified electroless deposition (ELD) method to uniformly deposit protective and catalytic Ni films on Si wafers, resulting in efficient and stable Si photoanodes for solar water oxidation. The optimized Ni/n-Si photoanode achieves an onset potential of ~ 1.09 V vs. a reversible hydrogen electrode and a saturation current density of ~ 27.5 mA/cm2 under AM 1.5 G illumination at pH 14. The ELD method is additionally capable of Ni deposition on a 4-inch n-Si wafer, demonstrating the first 4-inch Si photoanode. The solar water oxidation of the ELD-Ni/n-Si photoanode can be further improved by surface texturing, built-in n–p junctions, or coupling with more efficient catalysts.
Zhao, J. H.; Guo, Y.; Cai, L. L.; Li, H.; Wang, K. X.; Cho, I. S.; Lee, C. H.; Fan, S. H.; Zheng, X. L. High-performance ultrathin BiVO4 photoanode on textured polydimethylsiloxane substrates for solar water splitting. ACS Energy Lett. 2016, 1, 68-75.
Sun, K.; McDowell, M. T.; Nielander, A. C.; Hu, S.; Shaner, M. R.; Yang, F.; Brunschwig, B. S.; Lewis, N. S. Stable solar-driven water oxidation to O2(g) by Ni-oxide-coated silicon photoanodes. J. Phys. Chem. Lett. 2015, 6, 592-598.
Yu, X. W.; Yang, P.; Chen, S.; Zhang, M.; Shi, G. Q. NiFe alloy protected silicon photoanode for efficient water splitting. Adv. Energy Mater. 2017, 7, 1601805.
Loget, G.; Fabre, B.; Fryars, S.; Meriadec, C.; Ababou-Girard, S. Dispersed Ni nanoparticles stabilize silicon photoanodes for efficient and inexpensive sunlight-assisted water oxidation. ACS Energy Lett. 2017, 2, 569-573.
Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014, 344, 1005-1009.
Kim, T. W.; Choi, K. -S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990-994.
Kenney, M. J.; Gong, M.; Li, Y. G.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H. J. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 2013, 342, 836-840.
Scheuermann, A. G.; Lawrence, J. P.; Kemp, K. W.; Ito, T.; Walsh, A.; Chidsey, C. E. D.; Hurley, P. K.; McIntyre, P. C. Design principles for maximizing photovoltage in metal- oxide-protected water-splitting photoanodes. Nat. Mater. 2016, 15, 99-105.
Zhao, J. H.; Cai, L. L.; Li, H.; Shi, X. J.; Zheng, X. L. Stabilizing silicon photocathodes by solution-deposited Ni-Fe layered double hydroxide for efficient hydrogen evolution in alkaline media. ACS Energy Lett. 2017, 2, 1939-1946.
Zhou, X. H.; Liu, R.; Sun, K.; Friedrich, D.; McDowell, M. T.; Yang, F.; Omelchenko, S. T.; Saadi, F. H.; Nielander, A. C.; Yalamanchili, S. et al. Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide. Energy Environ. Sci. 2015, 8, 2644-2649.
Hill, J. C.; Landers, A. T.; Switzer, J. A. An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation. Nat. Mater. 2015, 14, 1150-1155.
Sun, K.; Shen, S. H.; Liang, Y. Q.; Burrows, P. E.; Mao, S. S.; Wang, D. L. Enabling silicon for solar-fuel production. Chem. Rev. 2014, 114, 8662-8719.
Sun, K.; Saadi, F. H.; Lichterman, M. F.; Hale, W. G.; Wang, H. P.; Zhou, X. H.; Plymale, N. T.; Omelchenko, S. T.; He, J. H.; Papadantonakis, K. M. et al. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films. Proc. Natl. Acad. Sci. USA 2015, 112, 3612-3617.
Hu, G. H.; Wu, H. H.; Yang, F. Z. Direct electroless nickel plating on silicon surface. Chin. Sci. Bull. 2004, 49, 2363-2367.
Niwa, D.; Homma, T.; Osaka, T. Deposition mechanism of Ni on Si(100) surfaces in aqueous alkaline solution. J. Phys. Chem. B 2004, 108, 9900-9904.
Chen, Y. W.; Prange, J. D.; Dühnen, S.; Park, Y.; Gunji, M.; Chidsey, C. E. D.; McIntyre, P. C. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 2011, 10, 539-544.
Mei, B.; Permyakova, A. A.; Frydendal, R.; Bae, D.; Pedersen, T.; Malacrida, P.; Hansen, O.; Stephens, I. E. L.; Vesborg, P. C. K.; Seger, B. et al. Iron-treated NiO as a highly transparent p-type protection layer for efficient Si-based photoanodes. J. Phys. Chem. Lett. 2014, 5, 3456-3461.
Lee, C. H.; Kim, J. H.; Zou, C. Y.; Cho, I. S.; Weisse, J. M.; Nemeth, W.; Wang, Q.; van Duin, A. C. T.; Kim, T. S.; Zheng, X. L. Peel-and-stick: Mechanism study for efficient fabrication of flexible/transparent thin-film electronics. Sci. Rep. 2013, 3, 2917.
Rodriguez, J.; Zhang, W.; Lim, S.; Lennon, A. Improved metal adhesion with galvanic nickel plating to silicon solar cells. Sol. Energy Mat. Sol. Cell. 2017, 165, 17-26.
Sun, K.; Park, N.; Sun, Z. L.; Zhou, J. G.; Wang, J.; Pang, X. L.; Shen, S. H.; Noh, S. Y.; Jing, Y.; Jin, S. H. et al. Nickel oxide functionalized silicon for efficient photo-oxidation of water. Energy Environ. Sci. 2012, 5, 7872-7877.
Khasin, A. A.; Yur'eva, T. M.; Kaichev, V. V.; Zaikovskii, V. I.; Demeshkina, M. P.; Minyukova, T. P.; Baronskaya, N. A.; Bukhtiyarov, V. I.; Parmon, V. N. Structure of the active component and catalytic properties of catalysts prepared by the reduction of layered nickel aluminosilicates. Kinet. Catal. 2006, 47, 412-422.
Shalvoy, R. B.; Reucroft, P. J.; Davis, B. H. Characterization of coprecipitated nickel on silica methanation catalysts by X-ray photoelectron spectroscopy. J. Catal. 1979, 56, 336-348.