Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Review Article

Recent advances in controlled modification of the size and morphology of metal-organic frameworks

Botao Liu1Kowsalya Vellingiri2Sang-Hee Jo1Pawan Kumar3()Yong Sik Ok4()Ki-Hyun Kim1()
Department of Civil & Environmental EngineeringHanyang University222 Wangsimni-RoSeoul04763Republic of Korea
Environmental and Water Resources Engineering DivisionDepartment of Civil EngineeringIIT Madras, Chennai600036India
Department of Nano Science and MaterialsCentral University of JammuJammuJ & K-180011India
Korea Biochar Research CenterO-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological EngineeringKorea UniversitySeoul02841Republic of Korea
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Advances in metal-organic frameworks (MOFs) resulted in significant contributions to diverse applications such as carbon capture, gas storage, heat transformation and separation along with emerging applications toward catalysis, medical imaging, drug delivery, and sensing. The unique in situ and ex situ structural features of MOFs can be tailored by conceptual selection of the organic (e.g., ligand) and inorganic (e.g., metal) components. Here, we provide a comprehensive review on the synthesis and characterization of MOFs, particularly with respect to controlling their size and morphology. A better understanding of the specific size and morphological parameters of MOFs will help initiate a new era for their real-world applications. Most importantly, this assessment will help develop novel synthesis methods for MOFs and their hybrid/porous materials counterparts with considerably improved properties in targeted applications.

References

1

Lehn, J. M. Supramolecular chemistry—Scope and perspectives: Molecules—Supermolecules—Molecular devices. J. Incl. Phenom. 1988, 6, 351–396.

2

Li, H. L.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.

3

Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Crystallized frameworks with giant pores: Are there limits to the possible? Acc. Chem. Res. 2005, 38, 217–225.

4

Tian, Y. -Q.; Zhao, Y. M.; Chen, Z. X.; Zhang, G. N.; Weng, L. -H.; Zhao, D. -Y. Design and generation of extended zeolitic metal–organic frameworks (ZMOFs): Synthesis and crystal structures of zinc(Ⅱ) imidazolate polymers with zeolitic topologies. Chem. —Eur. J. 2007, 13, 4146–4154.

5

Sarma, D.; Ramanujachary, K. V.; Lofland, S. E.; Magdaleno, T.; Natarajan, S. Amino acid based MOFs: Synthesis, structure, single crystal to single crystal transformation, magnetic and related studies in a family of cobalt and nickel aminoisophthales. Inorg. Chem. 2009, 48, 11660–11676.

6

Ren, Y. W.; Liang, J. X.; Lu, J. X.; Cai, B. W.; Shi, D. B.; Qi, C. R.; Jiang, H. F.; Chen, J.; Zheng, D. 1, 4-phenylenediacetate- based Ln MOFs—Synthesis, structures, luminescence, and catalytic activity. Eur. J. Inorg. Chem. 2011, 2011, 4369–4376.

7

Luo, F.; Che, Y. -X.; Zheng, J. -M. Employing Cd–O–C rod-shaped secondary building units to construct 2D metal- organic frameworks (MOFs): Hydrothermal synthesis, structures, and luminescent properties. J. Coord. Chem. 2008, 61, 2097–2104.

8

Plateroprats, A. E.; Bernini, M. C.; Medina, M. E.; López- Torres, E.; Gutiérrez-Puebla, E.; Monge, M. Á.; Snejko, N. Three novel indium MOFs derived from diphenic acid: Synthesis, crystal structures and supramolecular chemistry. CrystEngComm 2011, 13, 4965–4972.

9

Lee, J. Y.; Roberts, J. M.; Farha, O. K.; Sarjeant, A. A.; Scheidt, K. A.; Hupp, J. T. Synthesis and gas sorption properties of a metal-azolium framework (MAF) material. Inorg. Chem. 2009, 48, 9971–9973.

10

Farha, O. K.; Hupp, J. T. Rational design, synthesis, purification, and activation of metal-organic framework materials. Acc. Chem. Res. 2010, 43, 1166–1175.

11

Kim, J.; Chen, B. L.; Reineke, T. M.; Li, H. L.; Eddaoudi, M.; Moler, D. B.; O'Keeffe, M.; Yaghi, O. M. Assembly of metal- organic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures. J. Am. Chem. Soc. 2001, 123, 8239–8247.

12

Wen, L.; Shi, W.; Chen, X. T.; Li, H. H.; Cheng, P. A Porous Metal-organic framework based on triazoledicarboxylate ligands—Synthesis, structure, and gas-sorption studies. Eur. J. Inorg. Chem. 2012, 2012, 3562–3568.

13

Tan, C. R. Design and synthesis of reticular MOFs with high porosity and gas storage. Ph. D. Dissertation, University of Nottingham, Nottingham, 2013.

14

Wang, W. J.; Yuan, D. Q. Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation. Sci. Rep. 2014, 4, 5711.

15

Liu, S.; Sun, L. X.; Xu, F.; Zhang, J.; Jiao, C. L.; Li, F.; Li, Z. B.; Wang, S.; Wang, Z. Q.; Jiang, X. et al. Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity. Energy Environ. Sci. 2013, 6, 818–823.

16

Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Hydrogen storage in microporous metal-organic frameworks. Science 2003, 300, 1127–1129.

17

Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1, 4-benzenedicarboxylate)3(MOF-5). J. Am. Chem. Soc. 2007, 129, 14176–14177.

18

Manju; Roy, P. K.; Ramanan, A.; Rajagopal, C. Core–shell polysiloxane–MOF 5 microspheres as a stationary phase for gas–solid chromatographic separation. RSC Adv. 2014, 4, 17429–17433.

19

Maes, M.; Alaerts, L.; Vermoortele, F.; Ameloot, R.; Couck, S.; Finsy, V.; Denayer, J. F. M.; De Vos, D. E. Separation of C5-hydrocarbons on microporous materials: Complementary performance of MOFs and zeolites. J. Am. Chem. Soc. 2010, 132, 2284–2292.

20

Li, K. H.; Olson, D. H.; Lee, J. Y.; Bi, W. H.; Wu, K.; Yuen, T.; Xu, Q.; Li, J. Multifunctional microporous MOFs exhibiting gas/hydrocarbon adsorption selectivity, separation capability and three-dimensional magnetic ordering. Adv. Funct. Mater. 2008, 18, 2205–2214.

21

Liu, Y. H.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L.; Mi, J. G. Comparative study of separation performance of COFs and MOFs for CH4/CO2/H2 mixtures. Ind. Eng. Chem. Res. 2010, 49, 2902–2906.

22

Didas, S. A.; Choi, S.; Chaikittisilp, W.; Jones, C. W. Amine- oxide hybrid materials for CO2 capture from ambient air. Acc. Chem. Res. 2015, 48, 2680–2687.

23

Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S. Q.; Space, B.; Wojtas, L. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 2013, 495, 80–84.

24

Shekhah, O.; Belmabkhout, Y.; Chen, Z. J.; Guillerm, V.; Cairns, A.; Adil, K.; Eddaoudi, M. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nat. Commun. 2014, 5, 4228.

25

Xiang, S. C.; He, Y. B.; Zhang, Z. J.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B. L. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun. 2012, 3, 954.

26

Li, B. Y.; Zhang, Y. M.; Ma, D. X.; Li, L.; Li, G. H.; Li, G. D.; Shi, Z.; Feng, S. H. A strategy toward constructing a bifunctionalized MOF catalyst: Post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chem. Commun. 2012, 48, 6151.

27

Hwang, Y. K.; Hong, D. Y.; Chang, J. S.; Jhung, S. H.; Seo, Y. K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angew. Chem., Int. Ed. 2008, 47, 4144–4148.

28

Luz, I.; Xamena, F. X. L. I.; Corma, A. Bridging homogeneous and heterogeneous catalysis with MOFs: "Click" reactions with Cu-MOF catalysts. J. Catal. 2010, 276, 134–140.

29

Luz, I.; Xamena, F. X. L. I.; Corma, A. Bridging homogeneous and heterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines. J. Catal. 2012, 285, 285–291.

30

Moon, S. Y.; Liu, Y. Y.; Hupp, J. T.; Farha, O. K. Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework. Angew. Chem., Int. Ed. 2015, 54, 6795–6799.

31

Beyzavi, M. H.; Klet, R. C.; Tussupbayev, S.; Borycz, J.; Vermeulen, N. A.; Cramer, C. J.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K. A hafnium-based metal-organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. J. Am. Chem. Soc. 2014, 136, 15861–15864.

32

Larous, S.; Meniai, A. -H. Adsorption of diclofenac from aqueous solution using activated carbon prepared from olive stones. Int. J. Hydrogen Energy 2016, 41, 10380–10390.

33

Li, L.; Sun, K. K.; Fan, L.; Ma, D.; Liu, L. Preparation and drug-delivery properties of hybrid materials MOFs/graphite oxide. Sci. Adv. Mater. 2016, 8, 1628–1633.

34

Ibrahim, M.; Sabouni, R.; Husseini, G. A. Anti-cancer drug delivery using metal organic frameworks (MOFs). Curr. Med. Chem. 2016, 24, 193–214.

35

Chowdhuri, A. R.; Bhattacharya, D.; Sahu, S. K. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton trans. 2016, 45, 2963–2973.

36

Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem., Int. Ed. 2006, 45, 5974–5978.

37

Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 2008, 130, 6774–6780.

38

Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178.

39

Zhou, S. Y.; Zou, X. Q.; Sun, F. X.; Zhang, F.; Fan, S.; Zhao, H. J.; Schiestel, T.; Zhu, G. S. Challenging fabrication of hollow ceramic fiber supported Cu3(BTC)2 membrane for hydrogen separation. J. Mater. Chem. 2012, 22, 10322–10328.

40

Sakata, Y.; Furukawa, S.; Kondo, M.; Hirai, K.; Horike, N.; Takashima, Y.; Uehara, H.; Louvain, N.; Meilikhov, M.; Tsuruoka, T. et al. Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 2013, 339, 193–196.

41

Liu, Y. L.; Gao, P. F.; Huang, C. Z.; Li, Y. F. Shape- and size-dependent catalysis activities of iron-terephthalic acid metal-organic frameworks. Sci. China Chem. 2015, 58, 1553– 1560.

42

Stavila, V.; Volponi, J.; Katzenmeyer, A. M.; Dixon, M. C.; Allendorf, M. D. Kinetics and mechanism of metal-organic framework thin film growth: Systematic investigation of HKUST-1 deposition on QCM electrodes. Chem. Sci. 2012, 3, 1531–1540.

43

Hinterholzinger, F.; Scherb, C.; Ahnfeldt, T.; Stock, N.; Bein, T. Oriented growth of the functionalized metal-organic framework CAU-1 on -OH- and -COOH-terminated self-assembled monolayers. Phys. Chem. Chem. Phys. 2010, 12, 4515–4520.

44

Ban, Y. J.; Li, Y. S.; Liu, X. L.; Peng, Y.; Yang, W. S. Solvothermal synthesis of mixed-ligand metal–organic framework ZIF-78 with controllable size and morphology. Microporous Mesoporous Mater. 2013, 173, 29–36.

45

McKinstry, C.; Cussen, E. J.; Fletcher, A. J.; Patwardhan, S. V.; Sefcik, J. Effect of synthesis conditions on formation pathways of metal organic framework (MOF-5) crystals. Cryst. Growth Design 2013, 13, 5481–5486.

46

Hu, L.; Zhang, P.; Chen, Q. W.; Zhong, H.; Hu, X. Y.; Zheng, X. R.; Wang, Y.; Yan, N. Morphology-controllable synthesis of metal organic framework Cd3[Co(CN)6]2·nH2O nanostructures for hydrogen storage applications. Cryst. Growth Design 2012, 12, 2257–2264.

47

Gao, J.; Huang, C. H.; Lin, Y. F.; Tong, P.; Zhang, L. In situ solvothermal synthesis of metal–organic framework coated fiber for highly sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons. J. Chromatogr. 2016, 1436, 1–8.

48

Ordonez, C.; Kinnibrugh, T. L.; Xu, H. W.; Lindline, J.; Timofeeva, T.; Wei, Q. Synthesis of framework isomer MOFs containing zinc and 4-tetrazolyl benzenecarboxylic acid via a structure directing solvothermal approach. Crystals 2015, 5, 193–205.

49

Luo, F.; Che, Y. X.; Zheng, J. M. Construction of microporous metal–organic frameworks (MOFs) by Mn–O–C rod-like secondary building units (SBUs): Solvothermal synthesis, structure, thermostability, and magnetic properties. Inorg. Chem. Commun. 2008, 11, 358–362.

50

Khan, N. A.; Kang, I. J.; Seok, H. Y.; Jhung, S. H. Facile synthesis of nano-sized metal-organic frameworks, chromium- benzenedicarboxylate, MIL-101. Chem. Eng. J. 2011, 166, 1152–1157.

51

Bag, P. P.; Wang, X. S.; Cao, R. Microwave-assisted large scale synthesis of lanthanide metal-organic frameworks (Ln-MOFs), having a preferred conformation and photoluminescence properties. Dalton Trans. 2015, 44, 11954–11962.

52

Zhu, W.; Liu, P. J.; Xiao, S. J.; Wang, W. C.; Zhang, D. Q.; Li, H. X. Microwave-assisted synthesis of Ag-doped MOFs-like organotitanium polymer with high activity in visible-light driven photocatalytic NO oxidization. Appl. Catal. B: Environ. 2015, 172–173, 46–51.

53

Yang, H. M.; Song, X. L.; Yang, T. L.; Liang, Z. H.; Fan, C. M.; Hao, X. G. Electrochemical synthesis of flower shaped morphology MOFs in an ionic liquid system and their electrocatalytic application to the hydrogen evolution reaction. RSC Adv. 2014, 4, 15720–15726.

54

Sachdeva, S.; Pustovarenko, A.; Sudhölter, E. J. R.; Kapteijn, F.; de Smet, L. C. P. M.; Gascon, J. Control of interpenetration of copper-based MOFs on supported surfaces by electrochemical synthesis. CrystEngComm 2016, 18, 4018–4022.

55

Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E. Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chem. Mater. 2009, 21, 2580–2582.

56

Baser, H.; Schwieger, W. Ultrasonic monitoring of zeolite A and Metal Organic Frameworks (MOFs) formations: A comparative study. Stud. Surface Sci. Catal. 2008, 174, 455–458.

57

Li, Z. Q.; Qiu, L. G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z. Y.; Jiang, X. Ultrasonic synthesis of the microporous metal– organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Mater. Lett. 2009, 63, 78–80.

58

Li, Z. Q.; Tai, Y. F.; Zhang, M.; Qiu, L. G. Ultrasonic synthesis Cu(INA)2·4H2O nanocrystals and catalytic oxidation of styrene. Chem. Res. Appl. 2014, 26, 13-17.

59

Ji, M.; Hao, C.; Wang, D. D.; Li, H. J.; Qiu, J. S. A time-dependent density functional theory study on the effect of electronic excited-state hydrogen bonding on luminescent MOFs. Dalton Trans. 2013, 42, 3464–3470.

60

Choi, J. H.; Choi, Y. J.; Lee, J. W.; Shin, W. H.; Kang, J. K. Tunability of electronic band gaps from semiconducting to metallic states via tailoring Zn ions in MOFs with Co ions. Phys. Chem. Chem. Phys. 2009, 11, 628–631.

61

Mahata, P.; Sundaresan, A.; Natarajan, S. The role of temperature on the structure and dimensionality of MOFs: An illustrative study of the formation of manganese oxy-bis(benzoate) structures. Chem. Commun. 2007, 4471–4473.

62

Li, Y.; Wang, N.; Huang, J. Y.; Zhang, F. H.; Xiong, Y. J.; Cheng, Q.; Fang, J. F.; Zhu, F. F.; Long, Y.; Yue, S. T. KI-induced synthesis of highly connected 3D KI–Ln heterobimetallic MOFs: Temperature-dependent structure and physical properties. CrystEngComm 2016, 18, 1570–1576.

63

Mahata, P.; Prabu, M.; Natarajan, S. Role of temperature and time in the formation of infinite -M-O-M- linkages and isolated clusters in MOFs: A few illustrative examples. Inorg. Chem. 2008, 47, 8451–8463.

64

Cheng, X. Q.; Zhang, A. F.; Hou, K. K.; Liu, M.; Wang, Y. X.; Song, C. S.; Zhang, G. L.; Guo, X. W. Size- and morphology- controlled NH2-MIL-53(Al) prepared in DMF-water mixed solvents. Dalton Trans. 2013, 42, 13698–13705.

65

Li, J.; Yang, G. P.; Hou, L.; Cui, L.; Li, Y. P.; Wang, Y. Y.; Shi, Q. Z. Three new solvent-directed 3D lead(Ⅱ)-MOFs displaying the unique properties of luminescence and selective CO2 sorption. Dalton Trans. 2013, 42, 13590–13598.

66

Ju, Z. F.; Yuan, D. Q. Wings waving: Coordinating solvent- induced structural diversity of new Cu(Ⅱ) flexible MOFs with crystal to crystal transformation and gas sorption capability. CrystEngComm 2013, 15, 9513–9520.

67

Seetharaj, R.; Vandana, P. V.; Arya, P.; Mathew, S. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arab. J. Chem. 2016, DOI: 10.1016/j.arabjc.2016.01.003.

68

Polevaya, I. S.; Makitra, G. G.; Marshalok, G. A.; Kovalskyi, Y. P. Effect of the reactants molar ratio on the kinetics of cycloaddition of 2, 3-dimethylbuta-1, 3-diene to allyl methacrylate. Russ. J. Gen. Chem. 2012, 82, 1970–1974.

69

Huang, K.; Qiu, L. P.; Meng, J. F.; Wang, D. Optimization of crystallization of magnesium ammonium phosphate: Initial phosphate concentration, PH and reactants molar ratio. Appl. Mech. Mater. 2013, 295–298, 1289–1292.

70

Pan, Y. C.; Heryadi, D.; Zhou, F.; Zhao, L.; Lestari, G.; Su, H. B.; Lai, Z. P. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 2011, 13, 6937–6940.

71

Pal, M.; Mathews, N. R.; Santiago, P.; Mathew, X. A facile one-pot synthesis of highly luminescent CdS nanoparticles using thioglycerol as capping agent. J. Nanopart. Res. 2012, 14, 916.

72

Li, X. L.; Tian, W. G.; Xiao, C. X.; Stanton, A. L. D.; Pei, Y. C.; Jain, P. K.; Huang, W. Y. Synthesis of monodisperse palladium nanoclusters using metal–organic frameworks as sacrificial templates. ChemNanoMat 2016, 2, 810–815.

73

Lai, J. P.; Niu, W. X.; Luque, R.; Xu, G. B. Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 2015, 10, 240–267.

74

Wang, Y.; Yang, H. Oleic acid as the capping agent in the synthesis of noble metal nanoparticles in imidazolium-based ionic liquids. Chem. Commun. 2006, 2545–2547.

75

Masoomi, M. Y.; Morsali, A. Morphological study and potential applications of nano metal–organic coordination polymers. RSC Adv. 2013, 3, 19191–19218.

76

Kuppler, R. J.; Timmons, D. J.; Fang, Q. R.; Li, J. R.; Makal, T. A.; Young, M. D.; Yuan, D. Q.; Zhao, D.; Zhuang, W. J.; Zhou, H. C. Potential applications of metal-organic frameworks. Coord. Chem. Rev. 2009, 253, 3042–3066.

77

Fordham, S.; Wang, X.; Bosch, M.; Zhou, H. C. Lanthanide metal-organic frameworks: Syntheses, properties, and potential applications. In Lanthanide Metal-Organic Frameworks. Structure and Bonding; Cheng, P., Ed.; Springer: Berlin Heidelberg, 2014.

78

Li, Y. W.; Yang, R. T. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. J. Am. Chem. Soc. 2006, 128, 726–727.

79

Li, J. -R.; Ma, Y. G.; McCarthy, M. C.; Sculley, J.; Yu, J. M.; Jeong, H. -K.; Balbuena, P. B.; Zhou, H. -C. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 2011, 255, 1791–1823.

80

Frost, H.; Düren, T.; Snurr, R. Q. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal- organic frameworks. J. Phys. Chem. B 2006, 110, 9565–9570.

81

Ma, S. Q.; Zhou, H. -C. A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity. J. Am. Chem. Soc. 2006, 128, 11734–11735.

82

Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W. Hydrogen storage in metal-organic frameworks. Chem. Rev. 2012, 112, 782–835.

83

Hirscher, M. Hydrogen storage by cryoadsorption in ultrahigh-porosity metal-organic frameworks. Angew. Chem., Int. Ed. 2011, 50, 581–582.

84

Yuan, D. Q.; Zhao, D.; Sun, D. F.; Zhou, H. C. An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem., Int. Ed. 2010, 49, 5357–5361.

85

Kolotilov, S. V.; Pavlishchuk, V. V. Role of the chemical structure of metal–organic framework compounds in the adsorption of hydrogen. Theor. Exp. Chem. 2009, 45, 277–301.

86

Xiang, Z. H.; Cao, D. P.; Shao, X. H.; Wang, W. C.; Zhang, J. W.; Wu, W. Z. Facile preparation of high-capacity hydrogen storage metal-organic frameworks: A combination of microwave-assisted solvothermal synthesis and supercritical activation. Chem. Eng. Sci. 2010, 65, 3140–3146.

87

Khan, N. A.; Jhung, S. -H. Facile syntheses of metal-organic framework Cu3(BTC)2(H2O)3 under ultrasound. Bull. Korean Chem. Soc. 2009, 30, 2921–2926.

88

Ni, Z.; Masel, R. I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2006, 128, 12394–12395.

89

Klinowski, J.; Paz, F. A. A.; Silva, P.; Rocha, J. Microwave- assisted synthesis of metal–organic frameworks. Dalton Trans. 2011, 40, 321–330.

90

Schlesinger, M.; Schulze, S.; Hietschold, M.; Mehring, M. Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of[Cu2(BTC)3(H2O)3] and[Cu2(BTC)(OH)(H2O)]. Microporous Mesoporous Mater. 2010, 132, 121–127.

91

Zhuang, J. L.; Ceglarek, D.; Pethuraj, S.; Terfort, A. Rapid room-temperature synthesis of metal–organic framework HKUST-1 crystals in bulk and as oriented and patterned thin films. Adv. Funct. Mater. 2011, 21, 1442–1447.

92

Yang, H. W.; Orefuwa, S.; Goudy, A. Study of mechanochemical synthesis in the formation of the metal–organic framework Cu3(BTC)2 for hydrogen storage. Microporous Mesoporous Mater. 2011, 143, 37–45.

93

Wee, L. H.; Lohe, M. R.; Janssens, N.; Kaskel, S.; Martens, J. A. Fine tuning of the metal–organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range. J. Mater. Chem. 2012, 22, 13742–13746.

94

Meledina, M.; Turner, S.; Filippousi, M.; Leus, K.; Lobato, I.; Ramachandran, R. K.; Dendooven, J.; Detavernier, C.; Van Der Voort, P.; Van Tendeloo, G. Direct imaging of ALD deposited Pt nanoclusters inside the giant pores of MIL-101. Part. Part. Syst. Characteriz. 2016, 33, 382–387.

95

Gordon, J.; Kazemian, H.; Rohani, S. MIL-53 (Fe), MIL-101, and SBA-15 porous materials: Potential platforms for drug delivery. Mater. Sci. Eng. : C 2015, 47, 172–179.

96

Hinks, N. J.; McKinlay, A. C.; Xiao, B.; Wheatley, P. S.; Morris, R. E. Metal organic frameworks as NO delivery materials for biological applications. Microporous Mesoporous Mater. 2010, 129, 330–334.

97

Guo, J. F.; Fang, R. M.; Huang, C. Z.; Li, Y. F. Dual amplifying fluorescence anisotropy for detection of respiratory syncytial virus DNA fragments with size-control synthesized metal–organic framework MIL-101. RSC Adv. 2015, 5, 46301–46306.

98

Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B. L.; O'Keeffe, M.; Yaghi, O. M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005, 127, 1504–1518.

99

Qi, Z. -P.; Yang, J. -M.; Kang, Y. -S.; Sun, W. -Y. Morphology evolution and gas adsorption of porous metal–organic framework microcrystals. Dalton Trans. 2015, 44, 16888–16893.

100

Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.

101

Ma, M. Y.; Zacher, D.; Zhang, X. N.; Fischer, R. A.; Metzler- Nolte, N. A Method for the preparation of highly porous, nanosized crystals of isoreticular metal−organic frameworks. Cryst. Growth Design 2011, 11, 185–189.

102

Burrows, A. D.; Cassar, K.; Friend, R. M. W.; Mahon, M. F.; Rigby, S. P.; Warren, J. E. Solvent hydrolysis and templating effects in the synthesis of metal–organic frameworks. CrystEngComm 2005, 7, 548–550.

103

Khan, N. A.; Jhung, S. H. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coord. Chem. Rev. 2015, 285, 11–23.

104

Klinowski, J.; Paz, F. A. A.; Silva, P.; Rocha, J. ChemInform abstract: Microwave-assisted synthesis of metal-organic frameworks. ChemInform. 2011, 42, 321–330.

105

Blanita, G.; Borodi, G.; Lazar, M. D.; Biris, A. R.; Barbu-Tudoran, L.; Coldea, I.; Lupu, D. Microwave assisted non-solvothermal synthesis of metal–organic frameworks. RSC Adv. 2016, 6, 25967–25974.

106

Wang, P. Y.; Liu, J.; Liu, C. F.; Zheng, B.; Zou, X. Q.; Jia, M. J.; Zhu, G. S. Electrochemical synthesis and catalytic properties of encapsulated metal clusters within zeolitic imidazolate frameworks. Chem. - Eur. J. 2016, 22, 16613–16620.

107

Lin, Z. J.; Wragg, D. S.; Warren, J. E.; Morris, R. E. Anion control in the ionothermal synthesis of coordination polymers. J. Am. Chem. Soc. 2007, 129, 10334–10335.

108

Safarifard, V.; Morsali, A. Applications of ultrasound to the synthesis of nanoscale metal-organic coordination polymers. Coord. Chem. Rev. 2015, 292, 1–14.

109

Khoshhal, S.; Ghoreyshi, A. A.; Jahanshahi, M.; Mohammadi, M. Study of the temperature and solvent content effects on the structure of Cu–BTC metal organic framework for hydrogen storage. RSC Adv. 2015, 5, 24758–24768.

110

Son, W. J.; Kim, J.; Kim, J.; Ahn, W. S. Sonochemical synthesis of MOF-5. Chem. Commun. 2008, 6336–6338.

111

Bradshaw, D.; Garai, A.; Huo, J. Metal–organic framework growth at functional interfaces: Thin films and composites for diverse applications. Chem. Soc. Rev. 2012, 41, 2344–2381.

112

Shekhah, O.; Liu, J.; Fischer, R. A.; Wöll, C. MOF thin films: Existing and future applications. Chem. Soc. Rev. 2011, 40, 1081–1106.

113

Ranft, A.; Betzler, S. B.; Haase, F.; Lotsch, B. V. Additive- mediated size control of MOF nanoparticles. CrystEngComm 2013, 15, 9296–9300.

114

Yang, J.; Grzech, A.; Mulder, F. M.; Dingemans, T. J. The hydrogen storage capacity of mono-substituted MOF-5 derivatives: An experimental and computational approach. Microporous Mesoporous Mater. 2013, 171, 65–71.

115

Rowsell, J. L. C.; Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal−organic frameworks. J. Am. Chem. Soc. 2006, 128, 1304–1315.

116

Eddaoudi, M.; Kim, J.; Vodak, D.; Sudik, A.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Geometric requirements and examples of important structures in the assembly of square building blocks. Proc. Natl. Acad. Sci. USA 2002, 99, 4900– 4904.

117

Li, M.; Li, D.; O'Keeffe, M.; Yaghi, O. M. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 2014, 114, 1343–1370.

118

Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O'Keeffe, M.; Yaghi, O. M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 2009, 131, 3875–3877.

119

Diring, S.; Furukawa, S.; Takashima, Y.; Tsuruoka, T.; Kitagawa, S. Controlled multiscale synthesis of porous coordination polymer in nano/micro regimes. Chem. Mater. 2010, 22, 4531–4538.

120

Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

121

Guo, H. L.; Zhu, Y. Z.; Wang, S.; Su, S. Q.; Zhou, L.; Zhang, H. J. Combining coordination modulation with acid–base adjustment for the control over size of metal–organic frameworks. Chem. Mater. 2012, 24, 444–450.

122

Hermes, S.; Witte, T.; Hikov, T.; Zacher, D.; Bahnmüller, S.; Langstein, G.; Huber, K.; Fischer, R. A. Trapping metal-organic framework nanocrystals: An in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. J. Am. Chem. Soc. 2007, 129, 5324–5325.

123

Zacher, D.; Liu, J. N.; Huber, K.; Fischer, R. A. Nanocrystals of [Cu3(btc)2] (HKUST-1): A combined time-resolved light scattering and scanning electron microscopy study. Chem. Commun. 2009, 1031–1033.

124

Jiang, H. X.; Wang, Q. Y.; Wang, H. Q.; Chen, Y. F.; Zhang, M. H. Temperature effect on the morphology and catalytic performance of Co-MOF-74 in low-temperature NH3-SCR process. Catal. Commun. 2016, 80, 24–27.

125

Zhu, L. L.; Tan, C. F.; Gao, M. M.; Ho, G. W. Microreactors: Design of a metal oxide–organic framework (MoOF) foam microreactor: Solar-induced direct pollutant degradation and hydrogen generation (Adv. Mater. 47/2015). Adv. Mater. 2015, 27, 7681.

126

Tsuruoka, T.; Furukawa, S.; Takashima, Y.; Yoshida, K.; Isoda, S.; Kitagawa, S. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew. Chem., Int. Ed. 2009, 48, 4739–4743.

127

Guo, H. L.; Zhu, Y. Z.; Qiu, S. L.; Lercher, J. A.; Zhang, H. J. Coordination modulation induced synthesis of nanoscale Eu1–xTbx-metal-organic frameworks for luminescent thin films. Adv. Mater. 2010, 22, 4190–4192.

128

Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M. Controlling zeolitic imidazolate framework nano- and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 2011, 23, 2130–2141.

129

Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chemistry 2011, 17, 6643–6651.

130

Hu, Z. G.; Castano, I.; Wang, S. N.; Wang, Y. X.; Peng, Y. W.; Qian, Y. H.; Chi, C. L.; Wang, X. R.; Zhao, D. Modulator effects on the water-based synthesis of Zr/Hf metal–organic frameworks: Quantitative relationship studies between modulator, synthetic condition, and performance. Cryst. Growth Design 2016, 16, 2295–2301.

131

Drache, F.; Bon, V.; Senkovska, I.; Getzschmann, J.; Kaskel, S. The modulator driven polymorphism of Zr(IV) based metal- organic frameworks. Philos. Trans. A Math. Phys. Eng. Sci. 2017, 375, 20160027.

132

Chalati, T.; Horcajada, P.; Gref, R.; Couvreur, P.; Serre, C. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J. Mater. Chem. 2011, 21, 2220–2227.

133

Shi, N. E.; Du, W.; Jin, X. L.; Zhang, Y.; Han, M.; Xu, Z.; Xie, L. H.; Huang, W. Surfactant charge mediated shape control of nano- or microscaled coordination polymers: The case of tetrapyridylporphine based metal complex. Cryst. Growth Design 2014, 14, 1251–1257.

134

Gao, J. K.; Ye, K. Q.; Yang, L.; Xiong, W. W.; Ye, L.; Wang, Y.; Zhang, Q. C. Growing crystalline zinc-1, 3, 5-benzenetricarboxylate metal-organic frameworks in different surfactants. Inorg. Chem. 2014, 53, 691–693.

135

Tao, C. A.; Hu, Z. H.; Meng, L. Q.; Wang, F.; Wang, J. F. Sonochemical synthesis of photoluminescent nanoscale Eu(Ⅲ)- containing metal-organic frameworks. Mater. Sci. 2015, 21, 554-558.

136

Yao, M. S.; Tang, W. X.; Wang, G. E.; Nath, B.; Xu, G. MOF Thin film-coated metal oxide nanowire array: Significantly improved chemiresistor sensor performance. Adv. Mater. 2016, 28, 5229–5234.

137

Sun, W. Z.; Zhai, X. S.; Zhao, L. Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions. Chem. Eng. J. 2016, 289, 59–64.

138

Gu, Z. -G.; Fang, H. -C.; Yin, P. -Y.; Tong, L.; Ying, Y.; Hu, S. -J.; Li, W. -S.; Cai, Y. -P. A family of three-dimensional lanthanide-zinc heterometal–organic frameworks from 4, 5-imidazoledicarboxylate and oxalate. Cryst. Growth Design 2011, 11, 2220–2227.

139

Ghosh, S. K.; Kitagawa, S. Solvent as structure directing agent for the synthesis of novel coordination frameworks using a tripodal flexible ligand. CrystEngComm 2008, 10, 1739–1742.

140

Fan, X. X.; Wang, W.; Li, W.; Zhou, J. W.; Wang, B.; Zheng, J.; Li, X. G. Highly porous ZIF-8 nanocrystals prepared by a surfactant mediated method in aqueous solution with enhanced adsorption kinetics. ACS Appl. Mater. Interfaces 2014, 6, 14994–14999.

141

Sun, F. X.; Zhu, G. S. Solvent-directed synthesis of chiral and non-centrosymmetric metal–organic frameworks based on pyridine-3, 5-dicarboxylate. Inorg. Chem. Commun. 2013, 38, 115–118.

142

Laurikėnas, A.; Barkauskas, J.; Reklaitis, J.; Niaura, G.; Baltrūnas, D.; Kareiva, A. Formation peculiarities of iron (Ⅲ) acetate: Potential precursor for iron metal-organic frameworks (MOFs). Lithuanian J. Phys. 2016, 56, 35–41.

143

Yoon, J. H.; Choi, S. B.; Oh, Y. J.; Seo, M. J.; Jhon, Y. H.; Lee, T. B.; Kim, D.; Choi, S. H.; Kim, J. A porous mixed-valent iron MOF exhibiting the acs net: Synthesis, characterization and sorption behavior of Fe3O(F4BDC)3(H2O)3·(DMF)3.5. Catal. Today 2007, 120, 324–329.

144

Zhang, S. L.; Jiao, Z.; Yao, W. X. A simple solvothermal process for fabrication of a metal-organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples. J. Chromatogr. A 2014, 1371, 74–81.

145

Debatin, F.; Thomas, A.; Kelling, A.; Hedin, N.; Bacsik, Z.; Senkovska, I.; Kaskel, S.; Junginger, M.; Müller, H.; Schilde, U. et al. In situ synthesis of an imidazolate-4-amide-5-imidate ligand and formation of a microporous zinc-organic framework with H2- and CO2-storage ability. Angew. Chem., Int. Ed. 2010, 49, 1258–1262.

146

Zhao, D.; Yuan, D. Q.; Yakovenko, A.; Zhou, H. C. A NbO-type metal-organic framework derived from a polyyne-coupled di-isophthalate linker formed in situ. Chem. Commun. 2010, 46, 4196–4198.

147

Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196–1231.

148

Farha, O. K.; Yazaydın, A. Ö.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2010, 2, 944–948.

149

Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T. Control over catenation in metal−organic frameworks via rational design of the organic building block. J. Am. Chem. Soc. 2009, 132, 950–952.

150

Bury, W.; Fairen-Jimenez, D.; Lalonde, M. B.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T. Control over catenation in pillared paddlewheel metal–organic framework materials via solvent- assisted linker exchange. Chem. Mater. 2013, 25, 739–744.

151

Mulfort, K. L.; Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T. An interpenetrated framework material with hysteretic CO2 uptake. Chem. —Eur. J. 2010, 16, 276–281.

152

Alavi, M. A.; Morsali, A. Synthesis and characterization of different nanostructured copper(Ⅱ) metal–organic frameworks by a ligand functionalization and modulation method. CrystEngComm 2014, 16, 2246–2250.

153

Buragohain, A.; Van Der Voort, P.; Biswas, S. Facile synthesis and gas adsorption behavior of new functionalized Al-MIL-101-X (X= –CH3, –NO2, –OCH3, –C6H4, –F2, –(CH3)2, –(OCH3)2) materials. Microporous Mesoporous Mater. 2015, 215, 91–97.

154

Liu, B. T.; He, Y. P.; Han, L. P.; Singh, V.; Xu, X. N.; Guo, T.; Meng, F. Y.; Xu, X.; York, P.; Liu, Z. X. Microwave-assisted rapid synthesis of γ-cyclodextrin metal–organic frameworks for size control and efficient drug loading. Cryst. Growth Design 2017, 17, 1654–1660.

155

Abazari, R.; Mahjoub, A. R.; Slawin, A. M. Z.; Carpenter- Warren, C. L. Morphology- and size-controlled synthesis of a metal-organic framework under ultrasound irradiation: An efficient carrier for pH responsive release of anti-cancer drugs and their applicability for adsorption of amoxicillin from aqueous solution. Ultrasonics Sonochem. 2018, 42, 594–608.

156

Zou, Z.; Li, S. Q.; He, D. G.; He, X. X.; Wang, K. M.; Li, L. L.; Yang, X.; Li, H. F. A versatile stimulus-responsive metal– organic framework for size/morphology tunable hollow mesoporous silica and pH-triggered drug delivery. J. Mater. Chem. B 2017, 5, 2126–2132.

157

Mao, Y. Y.; Su, B. B.; Cao, W.; Li, J. W.; Ying, Y. L.; Ying, W.; Hou, Y. J.; Sun, L. W.; Peng, X. S. Specific oriented metal-organic framework membranes and their facet-tuned separation performance. ACS Appl. Mater. Interfaces 2014, 6, 15676–15685.

158

Wang, J. J.; Han, Y. Q.; Xu, H. T.; Xu, Z. L. Microporous assembly and shape control of a new Zn metal–organic framework: Morphology-dependent catalytic performance. Appl. Organom. Chem. 2018, 32, e4097.

159

Liu, Y. F.; Liu, B. L.; Zhou, Q. F.; Zhang, T. Y.; Wu, W. B. Morphology effect of metal-organic framework HKUST-1 as a catalyst on benzene oxidation. Chem. Res. Chin. Univ. 2017, 33, 971–978.

160

Sabouni, R.; Kazemian, H.; Rohani, S. Microwave synthesis of the CPM-5 metal organic framework. Chem. Eng. Technol. 2012, 35, 1085–1092.

161

Liang, W. B.; D'Alessandro, D. M. Microwave-assisted solvothermal synthesis of zirconium oxide based metal-organic frameworks. Chem. Commun. 2013, 49, 3706–3708.

Nano Research
Pages 4441-4467
Cite this article:
Liu B, Vellingiri K, Jo S-H, et al. Recent advances in controlled modification of the size and morphology of metal-organic frameworks. Nano Research, 2018, 11(9): 4441-4467. https://doi.org/10.1007/s12274-018-2039-3
Metrics & Citations  
Article History
Copyright
Return