AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors

Xiaoting LiHaibo Hu( )Tao Hua( )Bingang XuShouxiang Jiang
Nanotechnology CenterInstitute of Textiles & ClothingThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077China
Show Author Information

Graphical Abstract

Abstract

Flexible, wearable, and even stretchable sensors are the key components of smart electronic textiles. However, most reported flexible and wearable sensors for wearable electronics are usually fabricated in two-dimensional (2D) planar strip configurations, which cannot be properly integrated into textile structures and thus greatly degrade intrinsic properties such as the softness, flexibility, and air permeability of textiles and the aesthetic feeling of clothing. In this work, a new one-dimensional weavable strain sensing yarn consisting of an elastic polyurethane (PU) core, a conductive Ag-nanoparticles/graphene-microsheets composite sheath, and a silicone encapsulation layer was designed and fabricated through an easily manipulated protocol. Arising from the reasonable structural design and appropriate material selection, the as-fabricated strain sensor not only exhibited excellent flexibility, stretchability, and highly repeatable electromechanical stability (a repeatability error of 1.56%) but also possessed both high sensitivity (a gauge factor of nearly 500) and a relatively wide working range (0–50% applied strain) with good linearity (a correlation coefficient of 0.98). In addition, the facile, nearly all-solution-based fabrication protocol enabled the scalable production of long conductive yarns. Thus, the proper yarn length and superb mechanical properties endowed the stretchable conductive yarn with good weavability. The excellent wearability of the stretchable conductive yarn was derived from the outermost isolating, hydrophobic, and biocompatible silicone encapsulation layer. A wearable high-sensitivity strain sensing textile, fabricated by directly weaving the as-prepared yarn-based sensor, showed great potential for application to wearable textile sensors for real-time monitoring of human motions from vigorous walking to subtle and complex pronunciations.

Electronic Supplementary Material

Download File(s)
12274_2018_2043_MOESM1_ESM.pdf (1.4 MB)

References

1

Weng, W.; Chen, P. N.; He, S. S.; Sun, X. M.; Peng, H. S. Smart electronic textiles. Angew. Chem., Int. Ed. 2016, 55, 6140-6169.

2

Yetisen, A. K.; Qu, H.; Manbachi, A.; Butt, H.; Dokmeci, M. R.; Hinestroza, J. P.; Skorobogatiy, M.; Khademhosseini, A.; Yun, S. K. Nanotechnology in textiles. ACS Nano 2016, 10, 3042-3068.

3

Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310-5336.

4

Zhao, Z. Z.; Yan, C.; Liu, Z. X.; Fu, X. L.; Peng, L. M.; Hu, Y. F.; Zheng, Z. J. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv. Mater. 2016, 28, 10267-10274.

5

Huang, Q. Y.; Wang, D. R.; Zheng, Z. J. Textile-based electrochemical energy storage devices. Adv. Energy Mater. 2016, 6, 1600783.

6

Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

7

Yang, Y.; Huang, Q. Y.; Niu, L. Y.; Wang, D. R.; Yan, C.; She, Y. Y.; Zheng, Z. J. Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv. Mater. 2017, 29, 1606679.

8

Hu, B.; Li, D. P.; Ala, O.; Manandhar, P.; Fan, Q. G.; Kasilingam, D.; Calvert, P. D. Textile-based flexible electroluminescent devices. Adv. Funct. Mater. 2011, 21, 305-311.

9

Kim, W.; Kwon, S.; Han, Y. C.; Kim, E.; Choi, K. C.; Kang, S. H.; Park, B. C. Reliable actual fabric-based organic light-emitting diodes: Toward a wearable display. Adv. Electron. Mater. 2016, 2, 1600220.

10

Zhang, Z. T.; Guo, K. P.; Li, Y. M.; Li, X. Y.; Guan, G. Z.; Li, H. P.; Luo, Y. F.; Zhao, F. Y.; Zhang, Q.; Wei, B. et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nat. Photonics 2015, 9, 233-238.

11

Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. -H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859-864.

12

Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. -K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788-792.

13

Pang, C. H.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795-801.

14

Atalay, A.; Sanchez, V.; Atalay, O.; Vogt, D. M.; Haufe, F.; Wood, R. J.; Walsh, C. J. Batch fabrication of customizable silicone-textile composite capacitive strain sensors for human motion tracking. Adv. Mater. Technol. 2017, 2, 1700136.

15

Wang, H. Y.; Liu, Z. F.; Ding, J. N.; Lepró, X.; Fang, S. L.; Jiang, N.; Yuan, N. Y.; Wang, R.; Yin, Q.; Lv, W. et al. Downsized sheath-core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. Adv. Mater. 2016, 28, 4998-5007.

16

Li, R. Y.; Si, Y.; Zhu, Z. J.; Guo, Y. J.; Zhang, Y. J.; Pan, N.; Sun, G.; Pan, T. R. Supercapacitive iontronic nanofabric sensing. Adv. Mater. 2017, 29, 1700253.

17

Zeng, W.; Tao, X. M.; Chen, S.; Shang, S. M.; Chan, H. L. W.; Choy, S. H. Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ. Sci. 2013, 6, 2631-2638.

18

Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296-301.

19

Huang, Y.; Kershaw, S. V.; Wang, Z. T.; Pei, Z. X.; Liu, J. Y.; Huang, Y.; Li, H. F.; Zhu, M. S.; Rogach, A. L.; Zhi, C. Y. Highly integrated supercapacitor-sensor systems via material and geometry design. Small 2016, 12, 3393-3399.

20

Wang, Z. F.; Jiang, R. J.; Li, G. M.; Chen, Y. Y.; Tang, Z. J.; Wang, Y. K.; Liu, Z. X.; Jiang, H. B.; Zhi, C. Y. Flexible dual-mode tactile sensor derived from three-dimensional porous carbon architecture. ACS Appl. Mater. Interfaces 2017, 9, 22685-22693.

21

Coyle, S.; Wu, Y. Z.; Lau, K. T.; De Rossi, D.; Wallace, G.; Diamond, D. Smart nanotextiles: A review of materials and applications. MRS Bull. 2007, 32, 434-442.

22

Shu, L.; Hua, T.; Wang, Y. Y.; Li, Q. A.; Feng, D. D.; Tao, X. M. In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 767-775.

23

Güder, F.; Ainla, A.; Redston, J.; Mosadegh, B.; Glavan, A.; Martin, T. J.; Whitesides, G. M. Paper-based electrical respiration sensor. Angew. Chem., Int. Ed. 2016, 55, 5727-5732.

24

Takamatsu, S.; Lonjaret, T.; Crisp, D.; Badier, J. M.; Malliaras, G. G.; Ismailova, E. Direct patterning of organic conductors on knitted textiles for long-term electrocardiography. Sci. Rep. 2015, 5, 15003.

25

Wu, X. D.; Han, Y. Y.; Zhang, X. X.; Lu, C. H. Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@polyurethane yarn for tiny motion monitoring. ACS Appl. Mater. Interfaces 2016, 8, 9936-9945.

26

Son, D.; Lee, J.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Le, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014, 9, 397-404.

27

Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336-1342.

28

Liu, M. M.; Pu, X.; Jiang, C. Y.; Liu, T.; Huang, X.; Chen, L. B.; Du, C. H.; Sun, J. M.; Hu, W. G.; Wang, Z. L. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 2017, 29, 1703700.

29

Ajovalasit, A.; Zuccarello, B. Local Reinforcement Effect of a strain gauge installation on low modulus materials. J. Strain Anal. Eng. Des. 2005, 40, 643-653.

30

Barlian, A. A.; Park, W. T.; Mallon, J. R.; Rastegar, A. J.; Pruitt, B. L. Review: Semiconductor piezoresistance for microsystems. Proc. IEEE 2009, 97, 513-552.

31

Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957-11992.

32

Gong, S.; Lai, D. T. H.; Su, B.; Si, K. J.; Ma, Z.; Yap, L. W.; Guo, P. Z.; Cheng, W. L. Highly stretchy black gold e-skin nanopatches as highly sensitive wearable biomedical sensors. Adv. Electron. Mater. 2015, 1, 1400063.

33

Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 2014, 8, 5154-5163.

34

Frutiger, A.; Muth, J. T.; Vogt, D. M.; Mengüç, Y.; Campo, A.; Valentine, A. D.; Walsh, C. J.; Lewis, J. A. Capacitive soft strain sensors via multicore-shell fiber printing. Adv. Mater. 2015, 27, 2440-2446.

35

Castano, L. M.; Flatau, A. B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 053001.

36

Wang, F.; Zhu, B.; Shu, L.; Tao, X. M. Flexible pressure sensors for smart protective clothing against impact loading. Smart Mater. Struct. 2014, 23, 015001.

37

Chu, B. B.; Song, B.; Ji, X. Y.; Su, Y. Y.; Wang, H. Y.; He, Y. Fluorescent silicon nanorods-based ratiometric sensors for long-term and real-time measurements of intracellular pH in live cells. Anal. Chem. 2017, 89, 12152-12159.

38

Cheng, Y.; Wang, R. R.; Sun, J.; Gao, L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 2015, 27, 7365-7371.

39

Wang, Z. F.; Huang, Y.; Sun, J. F.; Huang, Y.; Hu, H.; Jiang, R. J.; Gai, W. M.; Li, G. M.; Zhi, C. Y. Polyurethane/cotton/ carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl. Mater. Interfaces 2016, 8, 24837-24843.

40

Du, D. H.; Li, P. C.; Ouyang, J. Y. Graphene coated nonwoven fabrics as wearable sensors. J. Mater. Chem. C 2016, 4, 3224-3230.

41

Zhang, R.; Deng, H.; Valenca, R.; Jin, J. H.; Fu, Q.; Bilotti, E.; Peijs, T. Carbon nanotube polymer coatings for textile yarns with good strain sensing capability. Sensor. Actuat. A 2012, 179, 83-91.

42

Lee, S.; Shin, S.; Lee, S.; Seo, J.; Lee, J.; Son, S.; Cho, H. J.; Algadi, H.; Al-Sayari, S.; Kim, D. E. et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 2015, 25, 3114-3121.

43

Shang, Y. Y.; Li, Y. B.; He, X. D.; Du, S. Y.; Zhang, L. H.; Shi, E. Z.; Wu, S. T.; Li, Z.; Li, P. X.; Wei, J. Q. et al. Highly twisted double-helix carbon nanotube yarns. ACS Nano 2013, 7, 1446-1453.

44

Zhang, M. C.; Wang, C. Y.; Wang, H. M.; Jian, M. Q.; Hao, X. Y.; Zhang, Y. Y. Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater. 2017, 27, 1604795.

45

Su, C. I.; Maa, M. C.; Yang, H. Y. Structure and performance of elastic core-spun yarn. Text. Res. J. 2004, 74, 607-610.

46

Bhowmick, A. K.; Stephens, H. L. Polynorbornene rubber. In Handbook of Elastomers; Marcel Dekker Inc. : New York, 2001.

47

Serizawa, T.; Kamimura, S.; Kawanishi, N.; Akashi, M. Layer-by-layer assembly of poly(vinyl alcohol) and hydrophobic polymers based on their physical adsorption on surfaces. Langmuir 2002, 18, 8381-8385.

48

Jayaraman, K.; Hsu, S. L.; McCarthy, T. J. Versatile multilayer thin film preparation using hydrophobic interactions, crystallization, and chemical modification of poly(vinyl alcohol). Langmuir 2007, 23, 3260-3264.

49

Lee, H.; Mensire, R.; Cohen, R. E.; Rubner, M. F. Strategies for hydrogen bonding based layer-by-layer assembly of poly(vinyl alcohol) with weak polyacids. Macromolecules 2012, 45, 347-355.

50

Ceratti, D. R.; Louis, B.; Paquez, X.; Faustini, M.; Grosso, D. A new dip coating method to obtain large-surface coatings with a minimum of solution. Adv. Mater. 2015, 27, 4958-4962.

51

Hu, L. B.; Pasta, M.; La Mantia, F.; Cui, L. F.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708-714.

52

Park, J. W.; Jang, J. Fabrication of graphene/free-standing nanofibrillar PEDOT/P(VDF-HFP) hybrid device for wearable and sensitive electronic skin application. Carbon 2015, 87, 275-281.

53

Tian, H.; Shu, Y.; Cui, Y. L.; Mi, M. T.; Yang, Y.; Xie, D.; Ren, T. -L. Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 2014, 6, 699-705.

54

Balima, F.; Le Floch, S.; Adessi, C.; Cerqueira, T. F. T.; Blanchard, N.; Arenal, R.; Brûlet, A.; Marques, M. A. L.; Botti, S.; San-Miguel, A. Radial collapse of carbon nanotubes for conductivity optimized polymer composites. Carbon 2016, 106, 64-73.

Nano Research
Pages 5799-5811
Cite this article:
Li X, Hu H, Hua T, et al. Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Research, 2018, 11(11): 5799-5811. https://doi.org/10.1007/s12274-018-2043-7

793

Views

115

Crossref

N/A

Web of Science

121

Scopus

6

CSCD

Altmetrics

Received: 16 December 2017
Revised: 21 February 2018
Accepted: 05 March 2018
Published: 20 March 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return