Graphical Abstract

The corrosion of metals can be induced by different environmental and operational conditions, and protecting metals from corrosion is a serious concern in many applications. The development of new materials and/or technologies to improve the efficiency of anti-corrosion coatings has attracted renewed interest. In this study, we develop a protective coating composed of a bilayer structure of reduced graphene oxide (RGO)/graphene oxide (GO) applied to Cu plates by spray-coating and subsequent annealing. The annealing of the GO/Cu plates at 120 ℃ produces a bilayer structure of RGO/GO by the partial reduction of the spray-coated GO layer. This induces superior corrosion resistance and adhesion strength compared to those of GO/Cu and RGO/Cu plates because of the hydrophobic nature of the RGO surface exposed to the surroundings and the formation of Cu-O bonds with the O-based functional groups of GO. This approach provides a viable and scalable route for using graphene coatings to protect metal surfaces from corrosion.
Gray, J. E.; Luan, B. Protective coatings on magnesium and its alloys—A critical review. J. Alloy. Compd. 2002, 336, 88-113.
Tallman, D. E.; Spinks, G.; Dominis, A.; Wallace, G. G. Electroactive conducting polymers for corrosion control. J. Solid State Electrochem. 2002, 6, 73-84.
Araujo, W. S.; Margarit, I. C. P.; Ferreira, M.; Mattos, O. R.; Neto, P. L. Undoped polyaniline anticorrosive properties. Electrochim. Acta 2001, 46, 1307-1312.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.
Vadukumpully, S.; Paul, J.; Mahanta, N.; Valiyaveettil, S. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 2011, 49, 198-205.
Chen, S. S.; Brown, L.; Levendorf, M.; Cai, W. W.; Ju, S. -Y.; Edgeworth, J.; Li, X. S.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D. et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 2011, 5, 1321-1327.
Aneja, K. S.; Bohm, S.; Khanna, A. S.; Bohm, H. L. M. Graphene based anticorrosive coatings for Cr(VI) replacement. Nanoscale 2015, 7, 17879-17888.
Prasai, D.; Tuberquia, J. C.; Harl, R. R.; Jennings, G. K.; Bolotin, K. I. Graphene: Corrosion-inhibiting coating. ACS Nano 2012, 6, 1102-1108.
Brownson, D. A. C.; Banks, C. E. The electrochemistry of CVD graphene: Progress and prospects. Phys. Chem. Chem. Phys. 2012, 14, 8264-8281.
Kim, K.; Artyukhov, V. I.; Regan, W.; Liu, Y. Y.; Crommie, M. F.; Yakobson, B. I.; Zettl, A. Ripping graphene: Preferred directions. Nano Lett. 2012, 12, 293-297.
Lin, Y. -M.; Valdes-Garcia, A.; Han, S.-J.; Farmer, D. B.; Meric, I.; Sun, Y.; Wu, Y.; Dimitrakopoulos, C.; Grill, A.; Avouris, P. et al. Wafer-scale graphene integrated circuit. Science 2011, 332, 1294-1297.
Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101-105.
Kang, D.; Kwon, J. Y.; Cho, H.; Sim, J. -H.; Hwang, H. S.; Kim, C. S.; Kim, Y. J.; Ruoff, R. S.; Shin, H. S. Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayers. ACS Nano 2012, 6, 7763-7769.
Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. -K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788-792.
Krantz, J.; Stubhan, T.; Richter, M.; Spallek, S.; Litzov, I.; Matt, G. J.; Spiecker, E.; Brabec, C. J. Spray-coated silver nanowires as top electrode layer in semitransparent P3HT: PCBM-based organic solar cell devices. Adv. Funct. Mater. 2013, 23, 1711-1717.
Hummers, W. S., Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.
Jang, K.; Hwang, D. -K.; Auxilia, F. M.; Jang, J.; Song, H.; Oh, B. -Y.; Kim, Y.; Nam, J.; Park, J. -W.; Jeong, S. et al. Sub-10-nm Co3O4 nanoparticles/ graphene composites as high-performance anodes for lithium storage. Chem. Eng. J. 2017, 309, 15-21.
Pei, S. F.; Zhao, J. P.; Du, J. H.; Ren, W. C.; Cheng, H. -M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48, 4466-4474.
Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 2009, 19, 2577-2583.
Gilje, S.; Han, S.; Wang, M. S.; Wang, K. L.; Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 2007, 7, 3394-3398.
Lin, L. X.; Wu, H. P.; Green, S. J.; Crompton, J.; Zhang, S. W.; Horsell, D. W. Formation of tunable graphene oxide coating with high adhesion. Phys. Chem. Chem. Phys. 2016, 18, 5086-5090.
Khusnun, N. F.; Jalil, A. A.; Triwahyono, S.; Jusoh, N. W. C.; Johari, A.; Kidam, K. Interaction between copper and carbon nanotubes triggers their mutual role in the enhanced photodegradation of p-chloroaniline. Phys. Chem. Chem. Phys. 2016, 18, 12323-12331.
Wang, G. X.; Yang, J.; Park, J.; Gou, X. L.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 2008, 112, 8192- 8195.