Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The corrosion of metals can be induced by different environmental and operational conditions, and protecting metals from corrosion is a serious concern in many applications. The development of new materials and/or technologies to improve the efficiency of anti-corrosion coatings has attracted renewed interest. In this study, we develop a protective coating composed of a bilayer structure of reduced graphene oxide (RGO)/graphene oxide (GO) applied to Cu plates by spray-coating and subsequent annealing. The annealing of the GO/Cu plates at 120 ℃ produces a bilayer structure of RGO/GO by the partial reduction of the spray-coated GO layer. This induces superior corrosion resistance and adhesion strength compared to those of GO/Cu and RGO/Cu plates because of the hydrophobic nature of the RGO surface exposed to the surroundings and the formation of Cu-O bonds with the O-based functional groups of GO. This approach provides a viable and scalable route for using graphene coatings to protect metal surfaces from corrosion.
Gray, J. E.; Luan, B. Protective coatings on magnesium and its alloys—A critical review. J. Alloy. Compd. 2002, 336, 88-113.
Tallman, D. E.; Spinks, G.; Dominis, A.; Wallace, G. G. Electroactive conducting polymers for corrosion control. J. Solid State Electrochem. 2002, 6, 73-84.
Araujo, W. S.; Margarit, I. C. P.; Ferreira, M.; Mattos, O. R.; Neto, P. L. Undoped polyaniline anticorrosive properties. Electrochim. Acta 2001, 46, 1307-1312.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.
Vadukumpully, S.; Paul, J.; Mahanta, N.; Valiyaveettil, S. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 2011, 49, 198-205.
Chen, S. S.; Brown, L.; Levendorf, M.; Cai, W. W.; Ju, S. -Y.; Edgeworth, J.; Li, X. S.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D. et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 2011, 5, 1321-1327.
Aneja, K. S.; Bohm, S.; Khanna, A. S.; Bohm, H. L. M. Graphene based anticorrosive coatings for Cr(VI) replacement. Nanoscale 2015, 7, 17879-17888.
Prasai, D.; Tuberquia, J. C.; Harl, R. R.; Jennings, G. K.; Bolotin, K. I. Graphene: Corrosion-inhibiting coating. ACS Nano 2012, 6, 1102-1108.
Brownson, D. A. C.; Banks, C. E. The electrochemistry of CVD graphene: Progress and prospects. Phys. Chem. Chem. Phys. 2012, 14, 8264-8281.
Kim, K.; Artyukhov, V. I.; Regan, W.; Liu, Y. Y.; Crommie, M. F.; Yakobson, B. I.; Zettl, A. Ripping graphene: Preferred directions. Nano Lett. 2012, 12, 293-297.
Lin, Y. -M.; Valdes-Garcia, A.; Han, S.-J.; Farmer, D. B.; Meric, I.; Sun, Y.; Wu, Y.; Dimitrakopoulos, C.; Grill, A.; Avouris, P. et al. Wafer-scale graphene integrated circuit. Science 2011, 332, 1294-1297.
Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101-105.
Kang, D.; Kwon, J. Y.; Cho, H.; Sim, J. -H.; Hwang, H. S.; Kim, C. S.; Kim, Y. J.; Ruoff, R. S.; Shin, H. S. Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayers. ACS Nano 2012, 6, 7763-7769.
Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. -K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788-792.
Krantz, J.; Stubhan, T.; Richter, M.; Spallek, S.; Litzov, I.; Matt, G. J.; Spiecker, E.; Brabec, C. J. Spray-coated silver nanowires as top electrode layer in semitransparent P3HT: PCBM-based organic solar cell devices. Adv. Funct. Mater. 2013, 23, 1711-1717.
Hummers, W. S., Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.
Jang, K.; Hwang, D. -K.; Auxilia, F. M.; Jang, J.; Song, H.; Oh, B. -Y.; Kim, Y.; Nam, J.; Park, J. -W.; Jeong, S. et al. Sub-10-nm Co3O4 nanoparticles/ graphene composites as high-performance anodes for lithium storage. Chem. Eng. J. 2017, 309, 15-21.
Pei, S. F.; Zhao, J. P.; Du, J. H.; Ren, W. C.; Cheng, H. -M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48, 4466-4474.
Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 2009, 19, 2577-2583.
Gilje, S.; Han, S.; Wang, M. S.; Wang, K. L.; Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 2007, 7, 3394-3398.
Lin, L. X.; Wu, H. P.; Green, S. J.; Crompton, J.; Zhang, S. W.; Horsell, D. W. Formation of tunable graphene oxide coating with high adhesion. Phys. Chem. Chem. Phys. 2016, 18, 5086-5090.
Khusnun, N. F.; Jalil, A. A.; Triwahyono, S.; Jusoh, N. W. C.; Johari, A.; Kidam, K. Interaction between copper and carbon nanotubes triggers their mutual role in the enhanced photodegradation of p-chloroaniline. Phys. Chem. Chem. Phys. 2016, 18, 12323-12331.
Wang, G. X.; Yang, J.; Park, J.; Gou, X. L.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 2008, 112, 8192- 8195.