AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrahigh energy density battery-type asymmetric supercapacitors: NiMoO4 nanorod-decorated graphene and graphene/Fe2O3 quantum dots

Jiao YangWei LiuHao NiuKui ChengKe YeKai ZhuGuiling WangDianxue CaoJun Yan( )
Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Material Science and Chemical Engineering Harbin Engineering UniversityHarbin150001China
Show Author Information

Graphical Abstract

Abstract

NiMoO4 has attracted intensive attention as one of the promising ternary metal oxides because of its high specific capacitance and electrical conductivity compared to traditional transition-metal oxides. In this study, NiMoO4 nanorods uniformly decorated on graphene nanosheets (G-NiMoO4) are synthesized through a facile hydrothermal method. The prepared G-NiMoO4 composite exhibits a high specific capacitance of 714 C·g-1 at 1 A·g-1 and an excellent rate capability, with a retention ratio of 57.7% even at 100 A·g-1. An asymmetric supercapacitor (ASC) fabricated with the G-NiMoO4 composite as the positive electrode and Fe2O3 quantum dot-decorated graphene (G-Fe2O3-QDs) as the negative electrode delivers an ultrahigh energy density of 130 Wh·kg-1, which is comparable to those of previously reported aqueous NiMoO4-based ASCs. Even when the power density reaches 33.6 kW·kg-1, an energy density of 56 Wh·kg-1 can be maintained. The ASC device exhibits outstanding cycling stability, with a capacitance retention of 113% after 40, 000 cycles. These results indicate that the G-NiMoO4 composite is a promising candidate for ASCs with ultrahigh energy density and excellent cycling stability. Moreover, the present work provides an exciting guideline for the future design of high-performance supercapacitors for industrial and consumer applications via the simultaneous use of various pseudocapacitive materials with suitable potential windows as the positive and negative electrodes.

Electronic Supplementary Material

Download File(s)
12274_2018_2059_MOESM1_ESM.pdf (1.7 MB)

References

1

Cheng, X. -B.; Zhang, R.; Zhao, C. -Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403-10473.

2

Xu, B.; Yue, S. F.; Sui, Z. Y.; Zhang, X. T.; Hou, S. S.; Cao, G. P.; Yang, Y. S. What is the choice for supercapacitors: Graphene or graphene oxide? Energy Environ. Sci. 2011, 4, 2826-2830.

3

Yu, D. S.; Goh, K.; Wang, H.; Wei, L.; Jiang, W. C.; Zhang, Q.; Dai, L. M.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 9, 555-562.

4

Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.

5

Li, S. F.; Yu, C.; Yang, J.; Zhao, C. T.; Zhang, M. D.; Huang, H. W.; Liu, Z. B.; Guo, W.; Qiu, J. S. A superhydrophilic "nanoglue" for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors. Energy Environ. Sci. 2017, 10, 1958-1965.

6

Xia, H.; Hong, C. Y.; Li, B.; Zhao, B.; Lin, Z. X.; Zheng, M. B.; Savilov, S. V.; Aldoshin, S. M. Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. Adv. Funct. Mater. 2015, 25, 627-635.

7

Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146-151.

8

Peng, S. J.; Li, L. L.; Wu, H. B.; Madhavi, S.; Lou, X. W. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater. 2015, 5, 1401172.

9

Wang, Y. G.; Xia, Y. Y. Recent progress in supercapacitors: From materials design to system construction. Adv. Mater. 2013, 25, 5336-5342.

10

Wang, Q.; Yan, J.; Fan, Z. J. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities. Energy Environ. Sci. 2016, 9, 729-762.

11

Choi, N. S.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem., Int. Ed. 2012, 51, 9994-10024.

12

Qu, Q. T.; Yang, S. B.; Feng, X. L. 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 2011, 23, 5574-5580.

13

Ding, J.; Wang, H. L.; Li, Z.; Cui, K.; Karpuzov, D.; Tan, X. H.; Kohandehghan, A.; Mitlin, D. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ. Sci. 2015, 8, 941-955.

14

Yang, X. W.; Cheng, C.; Wang, Y. F.; Qiu, L.; Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013, 341, 534-537.

15

Li, Y.; Kang, Z.; Yan, X. Q.; Cao, S. Y.; Li, M. H.; Liu, Y. C.; Liu, S.; Sun, Y. H.; Zheng, X.; Zhang, Y. A facile method for the preparation of three-dimensional cnt sponge and a nanoscale engineering design for high performance fiber-shaped asymmetric supercapacitors. J. Mater. Chem. A 2017, 5, 22559-22567.

16

Cong, H. -P.; Ren, X. -C.; Wang, P.; Yu, S. -H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 2013, 6, 1185-1191.

17

Li, Y.; Yan, X. Q.; Zheng, X.; Si, H. N.; Li, M. H.; Liu, Y. C.; Sun, Y. H.; Jiang, Y. R.; Zhang, Y. Fiber-shaped asymmetric supercapacitors with ultrahigh energy density for flexible/ wearable energy storage. J. Mater. Chem. A 2016, 4, 17704-17710.

18

Yu, Z. N.; Duong, B.; Abbitt, D.; Thomas, J. Highly ordered MnO2 nanopillars for enhanced supercapacitor performance. Adv. Mater. 2013, 25, 3302-3306.

19

Aravindan, V.; Gnanaraj, J.; Lee, Y. -S.; Madhavi, S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem. Rev. 2014, 114, 11619-11635.

20

Huang, L.; Zhang, W.; Xiang, J. W.; Xu, H. H.; Li, G. L.; Huang, Y. H. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors. Sci. Rep. 2016, 6, 31465.

21

Wu, Z. B.; Zhu, Y. R.; Ji, X. B. NiCo2O4-based materials for electrochemical supercapacitors. J. Mater. Chem. A 2014, 2, 14759-14772.

22

Chen, H. C.; Jiang, J. J.; Zhang, L.; Qi, T.; Xia, D. D.; Wan, H. Z. Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J. Power Sources 2014, 248, 28-36.

23

Li, Y. G.; Hasin, P.; Wu, Y. Y. NixCo3-xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 2010, 22, 1926-1929.

24

Wang, X.; Liu, W. S.; Lu, X. H.; Lee, P. S. Dodecyl sulfate-induced fast faradic process in nickel cobalt oxide-reduced graphite oxide composite material and its application for asymmetric supercapacitor device. J. Mater. Chem. 2012, 22, 23114-23119.

25

Liu, M. -C.; Kong, L. -B.; Lu, C.; Ma, X. -J.; Li, X. -M.; Luo, Y. -C.; Kang, L. Design and synthesis of CoMoO4-NiMoO4· xH2O bundles with improved electrochemical properties for supercapacitors. J. Mater. Chem. A 2013, 1, 1380-1387.

26

Hong, W.; Wang, J. Q.; Gong, P. W.; Sun, J. F.; Niu, L. Y.; Yang, Z. G.; Wang, Z. F.; Yang, S. R. Rational construction of three dimensional hybrid Co3O4@NiMoO4 nanosheets array for energy storage application. J. Power Sources 2014, 270, 516-525.

27

Zhang, P.; Zhou, J. Y.; Chen, W. J.; Zhao, Y. Y.; Mu, X. M.; Zhang, Z. X.; Pan, X. J.; Xie, E. Q. Constructing highly-efficient electron transport channels in the 3D electrode materials for high-rate supercapacitors: The case of NiCo2O4@ NiMoO4 hierarchical nanostructures. Chem. Eng. J. 2017, 307, 687-695.

28

Guo, D.; Luo, Y. Z.; Yu, X. Z.; Li, Q. H.; Wang, T. H. High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 2014, 8, 174-182.

29

Vidyadharan, B.; Aziz, R. A.; Misnon, I. I.; Anil Kumar, G. M.; Ismail, J.; Yusoff, M. M.; Jose, R. High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode. J. Power Sources 2014, 270, 526-535.

30

Li, Y. F.; Jian, J. M.; Fan, Y.; Wang, H.; Yu, L.; Cheng, G.; Zhou, J. L.; Sun, M. Facile one-pot synthesis of a NiMoO4/reduced graphene oxide composite as a pseudocapacitor with superior performance. RSC Adv. 2016, 6, 69627-69633.

31

Huang, Z. Y.; Zhang, Z.; Qi, X.; Ren, X. H.; Xu, G. H.; Wan, P. B.; Sun, X. M.; Zhang, H. Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes. Nanoscale 2016, 8, 13273-13279.

32

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

33

Fan, Y. Y.; Ma, W. G.; Han, D. X.; Gan, S. Y.; Dong, X. D.; Niu, L. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 2015, 27, 3767-3773.

34

Yang, M.; Lee, K. G.; Lee, S. J.; Lee, S. B.; Han, Y. K.; Choi, B. G. Three-dimensional expanded graphene-metal oxide film via solid-state microwave irradiation for aqueous asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 22364-22371.

35

Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666-686.

36

Huang, P. P.; Cao, C. Y.; Sun, Y. B.; Yang, S. L.; Wei, F.; Song, W. G. One-pot synthesis of sandwich-like reduced graphene oxide@CoNiAl layered double hydroxide with excellent pseudocapacitive properties. J. Mater. Chem. A 2015, 3, 10858-10863.

37

Chen, X. A.; Chen, X. H.; Zhang, F. Q.; Yang, Z.; Huang, S. M. One-pot hydrothermal synthesis of reduced graphene oxide/ carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor. J. Power Sources 2013, 243, 555-561.

38

Wang, Q. H.; Jiao, L. F.; Du, H. M.; Wang, Y. J.; Yuan, H. T. Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J. Power Sources 2014, 245, 101-106.

39

Zhang, Z. Y.; Xiao, F.; Guo, Y. L.; Wang, S.; Liu, Y. Q. One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Appl. Mater. Interfaces 2013, 5, 2227-2233.

40

Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101-105.

41

Yao, B. W.; Chen, J.; Huang, L.; Zhou, Q. Q.; Shi, G. Q. Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 2016, 28, 1623-1629.

42

Yan, J.; Wang, Q.; Wei, T.; Jiang, L. L.; Zhang, M. L.; Jing, X. Y.; Fan, Z. J. Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. ACS Nano 2014, 8, 4720-4729.

43

Chi, K.; Zhang, Z. Y.; Lv, Q. Y.; Xie, C. Y.; Xiao, J.; Xiao, F.; Wang, S. Well-ordered oxygen-deficient CoMoO4 and Fe2O3 nanoplate arrays on 3D graphene foam: Toward flexible asymmetric supercapacitors with enhanced capacitive properties. ACS Appl. Mater. Interfaces 2017, 9, 6044-6053.

44

Chu, Y. T.; Xiong, S. L.; Li, B. S.; Qian, Y. T.; Xi, B. J. Designed formation of MnO2@NiO/NiMoO4 nanowires@nanosheets hierarchical structures with enhanced pseudocapacitive properties. ChemElectroChem 2016, 3, 1347-1353.

45

Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632-2641.

46

Shan, D. D.; Yang, J.; Liu, W.; Yan, J.; Fan, Z. J. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 13589-13602.

47

Jiang, Y. T.; Yan, J.; Wu, X. L.; Shan, D. D.; Zhou, Q. H.; Jiang, L. L.; Yang, D. R.; Fan, Z. J. Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors. J. Power Sources 2016, 307, 190-198.

48

Cai, D. P.; Wang, D. D.; Liu, B.; Wang, Y. R.; Liu, Y.; Wang, L. L.; Li, H.; Huang, H.; Li, Q. H.; Wang, T. H. Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. ACS Appl. Mater. Interfaces 2013, 5, 12905-12910.

49

Owusu, K. A.; Qu, L. B.; Li, J. T.; Wang, Z. Y.; Zhao, K. N.; Yang, C.; Hercule, K. M.; Lin, C.; Shi, C. W.; Wei, Q. L. et al. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun 2017, 8, 14264.

50

Yan, J.; Ren, C. E.; Maleski, K.; Hatter, C. B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Flexible MXene/ graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264.

51

Liu, W.; Niu, H.; Yang, J.; Cheng, K.; Ye, K.; Zhu, K.; Wang, G. L.; Cao, D. X.; Yan, J. Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors. Chem. Mater. 2018, 30, 1055-1068.

52

Yan, J.; Sun, W.; Wei, T.; Zhang, Q.; Fan, Z. J.; Wei, F. Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. J. Mater. Chem. 2012, 22, 11494-11502.

53

Fu, C. P.; Mahadevegowda, A.; Grant, P. S. Production of hollow and porous Fe2O3 from industrial mill scale and its potential for large-scale electrochemical energy storage applications. J. Mater. Chem. A 2016, 4, 2597-2604.

54

Yin, Z. X.; Chen, Y. J.; Zhao, Y.; Li, C. Y.; Zhu, C. L.; Zhang, X. T. Hierarchical nanosheet-based CoMoO4-NiMoO4 nanotubes for applications in asymmetric supercapacitors and the oxygen evolution reaction. J. Mater. Chem. A 2015, 3, 22750-22758.

55

Liu, T.; Chai, H.; Jia, D. Z.; Su, Y.; Wang, T.; Zhou, W. Y. Rapid microwave-assisted synthesis of mesoporous NiMoO4 nanorod/ reduced graphene oxide composites for high-performance supercapacitors. Electrochim. Acta 2015, 180, 998-1006.

56

Wang, C. S.; Xi, Y.; Hu, C. G.; Dai, S. G.; Wang, M. J.; Cheng, L.; Xu, W. N.; Wang, G.; Li, W. L. β-NiMoO4 nanowire arrays grown on carbon cloth for 3D solid asymmetry supercapacitors. RSC Adv. 2015, 5, 107098-107104.

57

Qing, C.; Liu, Y.; Sun, X. D.; Ouyang, X. X.; Wang, H.; Sun, D. M.; Wang, B. X.; Zhou, Q.; Xu, L. F.; Tang, Y. W. Controlled growth of NiMoO4·H2O nanoflake and nanowire arrays on Ni foam for superior performance of asymmetric supercapacitors. RSC Adv. 2016, 6, 67785-67793.

58

Wang, J.; Zhang, L. P.; Liu, X. S.; Zhang, X.; Tian, Y. L.; Liu, X. X.; Zhao, J. P.; Li, Y. Assembly of flexible CoMoO4@ NiMoO4·xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors. Sci. Rep. 2017, 7, 41088.

59

Li, J.; Liu, K.; Gao, X.; Yao, B.; Huo, K. F.; Cheng, Y. L.; Cheng, X. F.; Chen, D. C.; Wang, B.; Sun, W. M. et al. Oxygen- and nitrogen-enriched 3D porous carbon for supercapacitors of high volumetric capacity. ACS Appl. Mater. Interfaces 2015, 7, 24622-24628.

Nano Research
Pages 4744-4758
Cite this article:
Yang J, Liu W, Niu H, et al. Ultrahigh energy density battery-type asymmetric supercapacitors: NiMoO4 nanorod-decorated graphene and graphene/Fe2O3 quantum dots. Nano Research, 2018, 11(9): 4744-4758. https://doi.org/10.1007/s12274-018-2059-z

832

Views

80

Crossref

N/A

Web of Science

84

Scopus

7

CSCD

Altmetrics

Received: 12 January 2018
Revised: 25 February 2018
Accepted: 18 March 2018
Published: 14 April 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return