Graphical Abstract

Electrolytes can be taken orally or intravenously as supplements or therapeutics. However, their therapeutic window may exceed the serum toxicity threshold, making systemic delivery a poor option. Local injection is also not adequate due to rapid diffusion of electrolytes. Here, we solved this issue with a nanocapsule technology, comprising an electrolyte nanocrystal as the drug filling and a silica sheath to regulate drug release rates. In particular, we prepared LiF@SiO2 nanocapsules and investigated their potential as a delivery system for lithium, which was shown in recent studies to be an effective therapeutic agent for osteoarthritis (OA). We demonstrated that LiF@SiO2 can extend lithium release time from minutes to more than 60 h. After intra- articular (i.a.) injection into a rat OA model, the nanocapsules reduced the Osteoarthritis Research Society International (OARSI) score by 71% in 8 weeks while inducing no systemic toxicity. Our study opens new doors for improved delivery of electrolyte therapeutics, which have rarely been studied in the past.
Cho, K.; Wang, X.; Nie, S. M.; Chen, Z. G.; Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008, 14, 1310–1316.
Farokhzad, O. C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16–20.
Phiel, C. J.; Klein, P. S. Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 789–813.
Corbella, B.; Vieta, E. Molecular targets of lithium action. Acta Neuropsychiatr. 2003, 15, 316–340.
Ryves, W. J.; Harwood, A. J. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem. Biophys. Res. Commun. 2001, 280, 720–725.
Geddes, J. R.; Burgess, S.; Hawton, K.; Jamison, K.; Goodwin, G. M. Long-term lithium therapy for bipolar disorder: Systematic review and meta-analysis of randomized controlled trials. Am. J. Psychiat. 2004, 161, 217–222.
Geller, B.; Luby, J. Child and adolescent bipolar disorder: A review of the past 10 years. J. Am. Acad. Child Adolesc. Psychiatry 1997, 36, 1168–1176.
Hui, W.; Litherland, G. J.; Jefferson, M.; Barter, M. J.; Elias, M. S.; Cawston, T. E.; Rowan, A. D.; Young, D. A. Lithium protects cartilage from cytokine-mediated degradation by reducing collagen-degrading MMP production via inhibition of the P38 mitogen-activated protein kinase pathway. Rheumatology 2010, 49, 2043–2053.
Minashima, T.; Zhang, Y.; Lee, Y.; Kirsch, T. Lithium protects against cartilage degradation in osteoarthritis. Arthritis Rheumatol. 2014, 66, 1228–1236.
Thompson, C. L.; Wiles, A.; Poole, C. A.; Knight, M. M. Lithium chloride modulates chondrocyte primary cilia and inhibits hedgehog signaling. Faseb J. 2016, 30, 716–726.
Lawrence, R. C.; Felson, D. T.; Helmick, C. G.; Arnold, L. M.; Choi, H.; Deyo, R. A.; Gabriel, S.; Hirsch, R.; Hochberg, M. C.; Hunder, G. G. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the united states. Arthritis Rheum. 2008, 58, 26–35.
Hunter, D. J.; Neogi, T.; Hochberg, M. C. Quality of osteoarthritis management and the need for reform in the US. Arthrit. Care Res. 2011, 63, 31–38.
Thompson, C. L.; Yasmin, H.; Varone, A.; Wiles, A.; Poole, C. A.; Knight, M. M. Lithium chloride prevents interleukin-1β induced cartilage degradation and loss of mechanical properties. J. Orthop. Res. 2015, 33, 1552–1559.
Oruch, R.; Elderbi, M. A.; Khattab, H. A.; Pryme, I. F.; Lund, A. Lithium: A review of pharmacology, clinical uses, and toxicity. Eur. J. Pharmacol. 2014, 740, 464–473.
Finley, P. R.; Warner, M. D.; Peabody, C. A. Clinical relevance of drug interactions with lithium. Clin. Pharmacokinet. 1995, 29, 172–191.
Timmer, R. T.; Sands, J. M. Lithium intoxication. J. Am. Soc. Nephrol. 1999, 10, 666–674.
Evans, C. H.; Kraus, V. B.; Setton, L. A. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 2014, 10, 11–22.
Gerwin, N.; Hops, C.; Lucke, A. Intra-articular drug delivery in osteoarthritis. Adv. Drug Deliv. Rev. 2006, 58, 226–242.
Zhang, W.; Ouyang, H. W.; Dass, C. R.; Xu, J. K. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 2016, 4, 15040.
Brown, T. J.; Laurent, U. B.; Fraser, J. R. Turnover of hyaluronan in synovial joints: Elimination of labelled hyaluronan from the knee joint of the rabbit. Exp. Physiol. 1991, 76, 125–134.
Schaafsma, G. Calcium in extracellular fluid: Homeostasis. In Calcium in Human Biology. Nordin, B. E. C., Eds. ; Springer: London, 1988; pp 241–259.
Cox, S. W.; Eley, B. M.; Kiili, M.; Asikainen, A.; Tervahartiala, T.; Sorsa, T. Collagen degradation by interleukin-1β-stimulated gingival fibroblasts is accompanied by release and activation of multiple matrix metalloproteinases and cysteine proteinases. Oral Dis. 2006, 12, 34–40.
Ning, B.; Wang, P.; Pei X. H.; Kang, Y. Q.; Song, J.; Wang, D. H.; Zhang, W. L.; Ma, R. X. Dual function of β-catenin in articular cartilage growthand degeneration at different stages of postnatal cartilage development. Int. Orthop. 2012, 36, 655–664.
Marshall, K. W.; Chan, A. D. M. Arthroscopic anterior cruciate ligament transection induces canine osteoarthritis. J. Rheumatol. 1996, 23, 338–343.
Altman, R. D.; Manjoo, A.; Fierlinger, A.; Niazi, F.; Nicholls, M. The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: A systematic review. BMC Musculoskel. Dis. 2015, 16, 321.
Young, W. Review of lithium effects on brain and blood. Cell Transplant. 2009, 18, 951–975.