AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas

Yi Zhang1,2,§Lulu Cai3,§Di Li1,§Yeh-Hsing Lao4Dingzhuo Liu2Mingqiang Li4,5( )Jianxun Ding1( )Xuesi Chen1
Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of SciencesChangchun130022China
Department of Orthopedics the Fourth Affiliated Hospital of China Medical UniversityShenyang110032China
Personalized Drug Therapy Key Laboratory of Sichuan Province Hospital of the University of Electronic Science and Technology of China Sichuan Provincial People’s HospitalChengdu610072China
Department of Biomedical Engineering Columbia University New YorkNY10027USA
Guangdong Provincial Key Laboratory of Liver Disease The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou510630China

§Yi Zhang, Lulu Cai, and Di Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Osteosarcoma is the most common malignancy in the bone. Current chemotherapy offers limited efficacy with significant side effects, especially for advanced and relapsed osteosarcomas. Nanoparticle-formulated chemotherapeutic drugs may be used to resolve these issues, but several aspects of these formulations remain unsatisfactory, such as how to improve their stability in the bloodstream, prevent undesirable drug leakage, and enhance targeted drug accumulation in the tumor. In this study, a tumor microenvironment-responsive calcium carbonate (CaCO3)-crosslinked hyaluronate (HA) nanoparticle was prepared via a "green" process to effectively deliver doxorubicin (DOX) for the treatment of various stages of osteosarcoma. The DOX-loaded hyaluronate-calcium carbonate hybrid nanoparticle (HA-DOX/CaCO3) demonstrated superior stability both in vitro and in vivo, and rapidly released DOX at the tumor site when triggered by the acidic tumor microenvironment. Compared with free DOX and a non-crosslinked nanoparticle (HA-DOX), HA-DOX/CaCO3 exhibited the most potent inhibition efficacy toward both primary and advanced models of murine osteosarcoma, resulting in effective tumor inhibition, improved survival time, and reduced adverse effects. Most importantly, in the advanced osteosarcoma model, HA-DOX/CaCO3 potently suppressed tumor growth by 84.6%, which indicates the potential of this platform for osteosarcoma treatment, particularly for advanced and relapsed cases. The proposed polysaccharide nanoparticle would be a promising drug delivery platform to advance osteosarcoma nanomedicine.

Electronic Supplementary Material

Download File(s)
12274_2018_2066_MOESM1_ESM.pdf (1.4 MB)

References

1

Moore, D. D.; Luu, H. H. Osteosarcoma. In Orthopaedic Oncology; Peabody, T.; Attar, S., Eds.; Springer: Cham, 2014; pp 65-92.

2

Gu, X. Y.; Ding, J. X.; Zhang, Z. Y.; Li, Q.; Zhuang, X. L.; Chen, X. S. Polymeric nanocarriers for drug delivery in osteosarcoma treatment. Curr. Pharm. Des. 2015, 21, 5187-5197.

3

Isakoff, M. S.; Bielack, S. S.; Meltzer, P.; Gorlick, R. Osteosarcoma: Current treatment and a collaborative pathway to success. J. Clin. Oncol. 2015, 33, 3029-3035.

4

Kansara, M.; Teng, M. W.; Smyth, M. J.; Thomas, D. M. Translational biology of osteosarcoma. Nat. Rev. Cancer 2014, 14, 722-735.

5

Shen, G. Z.; Xing, R. R.; Zhang, N.; Chen, C. J.; Ma, G. H.; Yan, X. H. Interfacial cohesion and assembly of bioadhesive molecules for design of long-term stable hydrophobic nanodrugs toward effective anticancer therapy. ACS Nano 2016, 10, 5720-5729.

6

He, L.; Li, D.; Wang, Z. T.; Xu, W. G.; Wang, J. X.; Guo, H.; Wang, C. X.; Ding, J. X. L-Cystine-crosslinked polypeptide nanogel as a reduction-responsive excipient for prostate cancer chemotherapy. Polymers2016, 8, 36.

7

Li, D.; Xu, W. G.; Li, P. Q.; Ding, J. X.; Cheng, Z. L.; Chen, L.; Yan, L. S.; Chen, X. S. Self-targeted polysaccharide prodrug suppresses orthotopic hepatoma. Mol. Pharmaceutics 2016, 13, 4231-4235.

8

Chen, J. J.; Ding, J. X.; Wang, Y. C.; Cheng, J. J.; Ji, S. X.; Zhuang, X. L.; Chen, X. S. Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors. Adv. Mater. 2017, 29, 1701170.

9

Sun, W. J.; Jiang, T. Y.; Lu, Y.; Reiff, M.; Mo, R.; Gu, Z. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery. J. Am. Chem. Soc. 2014, 136, 14722-14725.

10

Mo, R.; Jiang, T. Y.; DiSanto, R.; Tai, W. Y.; Gu, Z. ATP-triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.

11

Jiang, T. Y.; Sun, W. J.; Zhu, Q. W.; Burns, N. A.; Khan, S. A.; Mo, R.; Gu, Z. Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by graphene. Adv. Mater. 2015, 27, 1021-1028.

12

Wang, C.; Xu, L. G.; Liang, C.; Xiang, J.; Peng, R.; Liu, Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 2014, 26, 8154-8162.

13

de Faria, P. C. B.; dos Santos, L. I.; Coelho, J. P.; Ribeiro, H. B.; Pimenta, M. A.; Ladeira, L. O.; Gomes, D. A.; Furtado, C. A.; Gazzinelli, R. T. Oxidized multiwalled carbon nanotubes as antigen delivery system to promote superior CD8+ T cell response and protection against cancer. Nano Lett. 2014, 14, 5458-5470.

14

Allen, T. M.; Cullis, P. R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Del. Rev. 2013, 65, 36-48.

15

Chen, Q.; Feng, L. Z.; Liu, J. J.; Zhu, W. W.; Dong, Z. L.; Wu, Y. F.; Liu, Z. Intelligent albumin–MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 2016, 28, 7129-7136.

16

Feng, X. R.; Ding, J. X.; Gref, R.; Chen, X. S. Poly(β-cyclodextrin)-mediated polylactide-cholesterol stereocomplex micelles for controlled drug delivery. Chin. J. Polym. Sci. 2017, 35, 693-699.

17

Zhang, X. D.; Liang, X.; Gu, J. J.; Chang, D. F.; Zhang, J. X.; Chen, Z. W.; Ye, Y. Q.; Wang, C.; Tao, W.; Zeng, X. W. et al. Investigation and intervention of autophagy to guide cancer treatment with nanogels. Nanoscale 2017, 9, 150-163.

18

Qian, C. G.; Yu, J. C.; Chen, Y. L.; Hu, Q. Y.; Xiao, X. Z.; Sun, W. J.; Wang, C.; Feng, P. J.; Shen, Q. D.; Gu, Z. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv. Mater. 2016, 28, 3313-3320.

19

Zhang, Y.; Wang, F.; Li, M.; Yu, Z.; Qi, R.; Ding, J.; Zhang, Z.; Chen, X. Self-stabilized hyaluronate nanogel for intracellular codelivery of doxorubicin and cisplatin to osteosarcoma. Adv. Sci. 2018, 1700821.

20

Li, M. Q.; Tang, Z. H.; Zhang, D. W.; Sun, H.; Liu, H. Y.; Zhang, Y.; Zhang, Y. Y.; Chen, X. S. Doxorubicin-loaded polysaccharide nanoparticles suppress the growth of murine colorectal carcinoma and inhibit the metastasis of murine mammary carcinoma in rodent models. Biomaterials 2015, 51, 161-172.

21

Ma, X. M.; Zhang, X. T.; Yang, L.; Wang, G.; Jiang, K.; Wu, G.; Cui, W. G.; Wei, Z. P. Tunable construction of multi-shelled hollow carbonate nanospheres and their potential applications. Nanoscale 2016, 8, 8687-8695.

22

Wei, W.; Ma, G. H.; Hu, G.; Yu, D.; McLeish, T.; Su, Z. G.; Shen, Z. Y. Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. J. Am. Chem. Soc. 2008, 130, 15808-15810.

23

Dong, Z. L.; Feng, L. Z.; Zhu, W. W.; Sun, X. Q.; Gao, M.; Zhao, H.; Chao, Y.; Liu, Z. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials 2016, 110, 60-70.

24

Dong, Z. L.; Feng, L. Z.; Hao, Y.; Chen, M. C.; Gao, M.; Chao, Y.; Zhao, H.; Zhu, W. W.; Liu, J. J.; Liang, C. et al. Synthesis of hollow biomineralized CaCO3–polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity. J. Am. Chem. Soc. 2018, 140, 2165-2178.

25

Gonçalves, M.; Maciel, D.; Capelo, D.; Xiao, S. L.; Sun, W. J.; Shi, X. Y.; Rodrigues, J.; Tomás, H.; Li, Y. L. Dendrimer-assisted formation of fluorescent nanogels for drug delivery and intracellular imaging. Biomacromolecules 2014, 15, 492-499.

26

Liang, P.; Zhao, D.; Wang, C. Q.; Zong, J. Y.; Zhuo, R. X.; Cheng, S. X. Facile preparation of heparin/CaCO3/CaP hybrid nano-carriers with controllable size for anticancer drug delivery. Colloids Surf. B Biointerfaces 2013, 102, 783-788.

27

Han, S. Y.; Han, H. S.; Lee, S. C.; Kang, Y. M.; Kim, I. S.; Park, J. H. Mineralized hyaluronic acid nanoparticles as a robust drug carrier. J. Mater. Chem. 2011, 21, 7996-8001.

28

Min, K. H.; Min, H. S.; Lee, H. J.; Park, D. J.; Yhee, J. Y.; Kim, K.; Kwon, I. C.; Jeong, S. Y.; Silvestre, O. F.; Chen, X. Y. et al. pH-controlled gas-generating mineralized nanoparticles: A theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano 2015, 9, 134-145.

29

Ma, X. M.; Chen, H. F.; Yang, L.; Wang, K.; Guo, Y. M.; Yuan, L. Construction and potential applications of a functionalized cell with an intracellular mineral scaffold. Angew. Chem., Int. Ed. 2011, 50, 7414-7417.

30

Zhao, Y.; Luo, Z.; Li, M. H.; Qu, Q. Y.; Ma, X.; Yu, S. H.; Zhao, Y. L. A preloaded amorphous calcium carbonate/doxorubicin@silica nanoreactor for pH-responsive delivery of an anticancer drug. Angew. Chem., Int. Ed. 2015, 54, 919-922.

31

Ding, J.; Liang, T.; Zhou, Y.; He, Z. W.; Min, Q. H.; Jiang, L. P.; Zhu, J. J. Hyaluronidase-triggered anticancer drug and sirna delivery from cascaded targeting nanoparticles for drug-resistant breast cancer therapy. Nano Res. 2017, 10, 690-703.

32

Zhang, Y.; Wu, K. Q.; Sun, H. L.; Zhang, J.; Yuan, J. D.; Zhong, Z. Y. Hyaluronic acid-shelled disulfide-cross-linked nanopolymersomes for ultrahigh-efficiency reactive encapsulation and CD44-targeted delivery of mertansine toxin. ACS Appl. Mater. Interfaces 2018, 10, 1597-1604.

33

Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.

34

Xu, W. G.; Ding, J. X.; Xiao, C. S.; Li, L. Y.; Zhuang, X. L.; Chen, X. S. Versatile preparation of intracellular-acidity-sensitive oxime-linked polysaccharide-doxorubicin conjugate for malignancy therapeutic. Biomaterials 2015, 54, 72-86.

35

Li, C.; Qian, M.; Wang, S.; Jiang, H.; Du, Y.; Wang, J.; Lu, W.; Murthy, N.; Huang, R. Aptavalve-gated mesoporous carbon nanospheres image cellular mucin and provide on-demand targeted drug delivery. Theranostics 2017, 7, 3319-3325.

36

Han, X. P.; Li, Z. B.; Sun, J.; Luo, C.; Li, L.; Liu, Y. H.; Du, Y. Q.; Qiu, S. H.; Ai, X. Y.; Wu, C. N. et al. Stealth CD44-targeted hyaluronic acid supramolecular nanoassemblies for doxorubicin delivery: Probing the effect of uncovalent pegylation degree on cellular uptake and blood long circulation. J. Controlled Release 2015, 197, 29-40.

37

Li, S. Y.; Liu, L. H.; Cheng, H.; Li, B.; Qiu, W. X.; Zhang, X. Z. A dual-FRET-based fluorescence probe for the sequential detection of MMP-2 and caspase-3. Chem. Commun. 2015, 51, 14520-14523.

38

Mo, R.; Gu, Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater. Today 2016, 19, 274-283.

39

Hu, Q. Y.; Sun, W. J.; Lu, Y.; Bomba, H. N.; Ye, Y. Q.; Jiang, T. Y.; Isaacson, A. J.; Gu, Z. Tumor microenvironment-mediated construction and deconstruction of extracellular drug-delivery depots. Nano Lett. 2016, 16, 1118-1126.

40

Alvarez-Lorenzo, C.; Blanco-Fernandez, B.; Puga, A. M.; Concheiro, A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv. Drug Del. Rev. 2013, 65, 1148-1171.

41

Li, M. Q.; Lv, S. X.; Tang, Z. H.; Song, W. T.; Yu, H. Y.; Sun, H.; Liu, H. Y.; Chen, X. S. Polypeptide/doxorubicin hydrochloride polymersomes prepared through organic solvent-free technique as a smart drug delivery platform. Macromol. Biosci. 2013, 13, 1150-1162.

42

Li, S. Y.; Zhang, T.; Xu, W. G.; Ding, J. X.; Yin, F.; Xu, J.; Sun, W.; Wang, H. S.; Sun, M. X.; Cai, Z. D. Sarcoma-targeting peptide-decorated polypeptide nanogel intracellularly delivers shikonin for upregulated osteosarcoma necroptosis and diminished pulmonary metastasis. Theranostics 2018, 8, 1361-1375.

43

Jiang, Q.; Nie, Y.; Chen, X. B.; He, Y. Y.; Yue, D.; Gu, Z. W. pH-triggered pinpointed cascading charge-conversion and redox-controlled gene release design: Modularized fabrication for nonviral gene transfection. Adv. Funct. Mater. 2017, 27, 1701571.

44

Lei, M.; Fu, C.; Cheng, X.; Fu, B.; Wu, N. N.; Zhang, Q.; Fu, A. L.; Cheng, J. L.; Gao, J. H.; Zhao, Z. H. Activated surface charge-reversal manganese oxide nanocubes with high surface-to-volume ratio for accurate magnetic resonance tumor imaging. Adv. Funct. Mater. 2017, 27, 1700978.

45

Zhang, Y.; Xiao, C. S.; Li, M. Q.; Ding, J. X.; He, C. L.; Zhuang, X. L.; Chen, X. S. Core-cross-linked micellar nanoparticles from a linear-dendritic prodrug for dual-responsive drug delivery. Polym. Chem. 2014, 5, 2801-2808.

46

He, Q.; Huang, S.; Xu, S. Y.; Wang, L. Y. pH-responsive cocktail drug nanocarriers by encapsulating paclitaxel with doxorubicin modified poly(amino acid). RSC Adv. 2015, 5, 43148-43154.

47

McGowan, J. V.; Chung, R.; Maulik, A.; Piotrowska, I.; Walker, J. M.; Yellon, D. M. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc. Drugs Ther. 2017, 31, 63-75.

48

Zhao, Y. Y.; Chen, F.; Pan, Y. M.; Li, Z. P.; Xue, X. D.; Okeke, C. I.; Wang, Y. F.; Li, C.; Peng, L.; Wang, P. C. et al. Nanodrug formed by coassembly of dual anticancer drugs to inhibit cancer cell drug resistance. ACS Appl. Mater. Interfaces 2015, 7, 19295-19305.

49

Lee, S. M.; O'Halloran, T. V.; Nguyen, S. T. Polymer-caged nanobins for synergistic cisplatin-doxorubicin combination chemotherapy. J. Am. Chem. Soc. 2010, 132, 17130-17138.

50

Zhang, W. J.; Wang, F. H.; Wang, Y.; Wang, J. N.; Yu, Y. N.; Guo, S. R.; Chen, R. J.; Zhou, D. J. pH and near-infrared light dual-stimuli responsive drug delivery using DNA-conjugated gold nanorods for effective treatment of multidrug resistant cancer cells. J. Controlled Release 2016, 232, 9-19.

51

Wang, C.; Wu, C. Y.; Zhou, X. J.; Han, T.; Xin, X. Z.; Wu, J. Y.; Zhang, J. Y.; Guo, S. W. Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots. Sci. Rep. 2013, 3, 2852.

52

Farhane, Z.; Bonnier, F.; Byrne, H. J. Monitoring doxorubicin cellular uptake and trafficking using in vitro Raman microspectroscopy: Short and long time exposure effects on lung cancer cell lines. Anal. Bioanal. Chem. 2017, 409, 1333-1346.

53

Zhao, K. D.; Li, D.; Xu, W. G.; Ding, J. X.; Jiang, W. Q.; Li, M. Q.; Wang, C. X.; Chen, X. S. Targeted hydroxyethyl starch prodrug for inhibiting the growth and metastasis of prostate cancer. Biomaterials 2017, 116, 82-94.

54

Jin, E. L.; Zhang, B.; Sun, X. R.; Zhou, Z. X.; Ma, X. P.; Sun, Q. H.; Tang, J. B.; Shen, Y. Q.; Van Kirk, E.; Murdoch, W. J. et al. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. J. Am. Chem. Soc. 2013, 135, 933-940.

55

Ding, J. X.; Xu, W. G.; Zhang, Y.; Sun, D. K.; Xiao, C. S.; Liu, D. H.; Zhu, X. J.; Chen, X. S. Self-reinforced endocytoses of smart polypeptide nanogels for "on-demand" drug delivery. J. Controlled Release 2013, 172, 444-455.

56

Lv, S. X.; Tang, Z. H.; Li, M. Q.; Lin, J.; Song, W. T.; Liu, H. Y.; Huang, Y. B.; Zhang, Y. Y.; Chen, X. S. Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials 2014, 35, 6118-6129.

57

Li, M. Q.; Tang, Z. H.; Lv, S. X.; Song, W. T.; Hong, H.; Jing, X. B.; Zhang, Y. Y.; Chen, X. S. Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin. Biomaterials 2014, 35, 3851-3864.

58

Kang, M. S.; Singh, R. K.; Kim, T. H.; Kim, J. H.; Patel, K. D.; Kim, H. W. Optical imaging and anticancer chemotherapy through carbon dot created hollow mesoporous silica nanoparticles. Acta Biomater. 2017, 55, 466-480.

59

Tao, X. Y.; Jia, N.; Cheng, N. H.; Ren, Y. H.; Cao, X. N.; Liu, M.; Wei, D. Z.; Wang, F. Q. Design and evaluation of a phospholipase d based drug delivery strategy of novel phosphatidyl-prodrug. Biomaterials 2017, 131, 1-14.

60

Li, M. Q.; Tang, Z. H.; Zhang, Y.; Lv, S. X.; Li, Q. S.; Chen, X. S. Targeted delivery of cisplatin by LHRH-peptide conjugated dextran nanoparticles suppresses breast cancer growth and metastasis. Acta Biomater. 2015, 18, 132-143.

61

Murthy, A.; Li, Y.; Peng, I.; Reichelt, M.; Katakam, A. K.; Noubade, R.; Roose-Girma, M.; DeVoss, J.; Diehl, L.; Graham, R. R. et al. A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 2014, 506, 456-462.

62

Okada, H.; Mak, T. W. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat. Rev. Cancer 2004, 4, 592-603.

63

Wentzensen, N.; Schwartz, L.; Zuna, R. E.; Smith, K.; Mathews, C.; Gold, M. A.; Allen, R. A.; Zhang, R.; Dunn, S. T.; Walker, J. L. et al. Performance of p16/Ki-67 immunostaining to detect cervical cancer precursors in a colposcopy referral population. Clin. Cancer Res. 2012, 18, 4154-4162.

64

Bertz, S.; Otto, W.; Denzinger, S.; Wieland, W. F.; Burger, M.; Stöhr, R.; Link, S.; Hofstädter, F.; Hartmann, A. Combination of CK20 and Ki-67 immunostaining analysis predicts recurrence, progression, and cancer-specific survival in pt1 urothelial bladder cancer. Eur. Urol. 2014, 65, 218-226.

65

Sun, D. K.; Ding, J. X.; Xiao, C. S.; Chen, J. J.; Zhuang, X. L.; Chen, X. S. Preclinical evaluation of antitumor activity of acid-sensitive pegylated doxorubicin. ACS Appl. Mater. Interfaces 2014, 6, 21202-21214.

66

Miranda, C. J.; Makui, H.; Soares, R. J.; Bilodeau, M.; Mui, J.; Vali, H.; Bertrand, R.; Andrews, N. C.; Santos, M. M. Hfe deficiency increases susceptibility to cardiotoxicity and exacerbates changes in iron metabolism induced by doxorubicin. Blood 2003, 102, 2574-2580.

67

Ding, J. X.; Li, C.; Zhang, Y.; Xu, W. G.; Wang, J.; Chen, X. Chirality-mediated polypeptide micelles for regulated drug delivery. Acta Biomater. 2015, 11, 346-355.

68

Han, K.; Zhang, W. Y.; Zhang, J.; Ma, Z. Y.; Han, H. Y. pH-responsive nanoscale coordination polymer for efficient drug delivery and real-time release monitoring. Adv. Healthcare Mater. 2017, 6, 1700470.

69

Li, X. R.; Yang, X. C.; Lin, Z. Q.; Wang, D.; Mei, D.; He, B.; Wang, X. Y.; Wang, X. Y.; Zhang, Q.; Gao, W. A folate modified pH sensitive targeted polymeric micelle alleviated systemic toxicity of doxorubicin (DOX) in multi-drug resistant tumor bearing mice. Eur. J. Pharm. Sci. 2015, 76, 95-101.

Nano Research
Pages 4806-4822
Cite this article:
Zhang Y, Cai L, Li D, et al. Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas. Nano Research, 2018, 11(9): 4806-4822. https://doi.org/10.1007/s12274-018-2066-0

1214

Views

104

Crossref

N/A

Web of Science

109

Scopus

5

CSCD

Altmetrics

Received: 30 January 2018
Revised: 24 March 2018
Accepted: 25 March 2018
Published: 25 April 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return