AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electron doping induced semiconductor to metal transitions in ZrSe2 layers via copper atomic intercalation

Zahir Muhammad1,§Kejun Mu1,§Haifeng Lv2Chuanqiang Wu1Zia ur Rehman1Muhammad Habib1Zhe Sun1( )Xiaojun Wu2Li Song1( )
National Synchrotron Radiation LaboratoryCAS Center for Excellence in NanoscienceCAS Key Laboratory of Strongly-coupled Quantum Matter PhysicsUniversity of Science and Technology of ChinaHefei230029China
CAS Key Laboratory of Materials for Energy ConservationSynergetic Innovation Centre of Quantum Information & Quantum PhysicsCAS Center for Excellence in Nanoscienceand Department of Material Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China

§ Zahir Muhammad and Kejun Mu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Atomic intercalation in two-dimensional (2D) layered materials can be used to engineer the electronic structure at the atomic scale and generate tuneable physical and chemical properties which are quite distinct in comparison with the pristine material. Among them, electron-doped engineering induced by intercalation is an efficient route to modulate electronic states in 2D layers. Herein, we demonstrate a semiconducting to metallic phase transition in zirconium diselenide (ZrSe2) single crystals via controllable incorporation of copper (Cu) atoms. Our angle resolved photoemission spectroscopy (ARPES) measurements and first-principles density functional theory (DFT) calculations clearly revealed the emergence of conduction band dispersion at the M/L point of the Brillouin zone due to Cu-induced electron doping in ZrSe2 interlayers. Moreover, electrical measurements in ZrSe2 revealed semiconducting behavior, while the Cu-intercalated ZrSe2 exhibited a linear current–voltage curve with metallic character. The atomic intercalation approach may have high potential for realizing transparent electron-doping systems for many specific 2D-based nanoelectronic applications.

Electronic Supplementary Material

Download File(s)
12274_2018_2081_MOESM1_ESM.pdf (1.8 MB)

References

1

Balendhran, S.; Walia, S.; Nili, H.; Ou, J. Z.; Zhuiykov, S.; Kaner, R. B.; Sriram, S.; Bhaskaran, M.; Kalantar-Zadeh, K. Two-dimensional molybdenum trioxide and dichalcogenides. Adv. Funct. Mater. 2013, 23, 3952-3970.

2

Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898-2926.

3

Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713-2731.

4

Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899-907.

5

Wang, X. T.; Huang, L.; Jiang, X. -W.; Li, Y.; Wei, Z. M.; Li, J. B. Large scale ZrS2 atomically thin layers. J. Mater. Chem. C 2016, 4, 3143-3148.

6

Zhang, M.; Zhu, Y. M.; Wang, X. S.; Feng, Q. L.; Qiao, S. L.; Wen, W.; Chen, Y. F.; Cui, M. H.; Zhang, J.; Cai, C. Z. et al. Controlled synthesis of ZrS2 monolayer and few layers on hexagonal boron nitride. J. Am. Chem. Soc. 2015, 137, 7051-7054.

7

Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509-11539.

8

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. -Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.

9

Kumar, A.; Ahluwalia, P. K. Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: New direct band gap semiconductors. Eur. Phys. J. B 2012, 85, 186.

10

Ellis, J. K.; Lucero, M. J.; Scuseria, G. E. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 2011, 99, 261908.

11

Zhang, Y.; Chang, T. -R.; Zhou, B.; Cui, Y. -T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111-115.

12

Jin, W. C.; Yeh, P. -C.; Zaki, N.; Zhang, D. T.; Sadowski, J. T.; Al-Mahboob, A.; van Der Zande, A. M.; Chenet, D. A.; Dadap, J. I.; Herman, I. P. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2013, 111, 106801.

13

Roldán, R.; Silva-Guillén, J. A.; López-Sancho, M. P.; Guinea, F.; Cappelluti, E.; Ordejón, P. Electronic properties of single-layer and multilayer transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se). Annalen der Physik 2014, 526, 347-357.

14

Zhu, Z. Y.; Cheng, Y. C.; Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 2011, 84, 153402.

15

Sun, L. F.; Yan, J. X.; Zhan, D.; Liu, L.; Hu, H. L.; Li, H.; Tay, B. K.; Kuo, J. -L.; Huang, C. -C.; Hewak, D. W. et al. Spin-orbit splitting in single-layer MoS2 revealed by triply resonant Raman scattering. Phys. Rev. Lett. 2013, 111, 126801.

16

Alidoust, N.; Bian, G.; Xu, S. -Y.; Sankar, R.; Neupane, M.; Liu, C.; Belopolski, I.; Qu, D. -X.; Denlinger, J. D.; Chou, F. -C. et al. Observation of monolayer valence band spin-orbit effect and induced quantum well states in MoX2. Nat. Commun. 2014, 5, 4673.

17

Miwa, J. A.; Ulstrup, S.; Sørensen, S. G.; Dendzik, M.; Čabo, A. G.; Bianchi, M.; Lauritsen, J. V.; Hofmann, P. Electronic structure of epitaxial single-layer MoS2. Phys. Rev. Lett. 2015, 114, 046802.

18

Riley, J. M.; Mazzola, F.; Dendzik, M.; Michiardi, M.; Takayama, T.; Bawden, L.; Granerød, C.; Leandersson, M.; Balasubramanian, T.; Hoesch, M. et al. Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor. Nat. Phys. 2014, 10, 835-839.

19

Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494-498.

20

Xiao, D.; Liu, G. -B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

21

Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490-493.

22

Yu, H. Y.; Cui, X. D.; Xu, X. D.; Yao, W. Valley excitons in two-dimensional semiconductors. Nat. Sci. Rev. 2015, 2, 57-70.

23

Cheiwchanchamnangij, T.; Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 2012, 85, 205302.

24

Komsa, H. -P.; Krasheninnikov, A. V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 2012, 86, 241201.

25

Ugeda, M. M.; Bradley, A. J.; Shi, S. -F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. -K.; Hussain, Z.; Shen, Z. -X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091-1095.

26

Qiu, D. Y.; da Jornada, F. H.; Louie, S. G. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett. 2013, 111, 216805.

27

Rybkin, A. G.; Rybkina, A. A.; Otrokov, M. M.; Vilkov, O. Y.; Klimovskikh, I. I.; Petukhov, A. E.; Filianina, M. V.; Voroshnin, V. Y.; Rusinov, I. P.; Ernst, A. et al. Magneto-spin-orbit graphene: Interplay between exchange and spin-orbit couplings. Nano Lett. 2018, 18, 1564-1574.

28

Späh, R.; Elrod, U.; Lux-Steiner, M.; Bucher, E.; Wagner, S. pn junctions in tungsten diselenide. Appl. Phys. Lett. 1983, 43, 79-81.

29

Podzorov, V.; Gershenson, M. E.; Kloc, C.; Zeis, R.; Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 2004, 84, 3301-3303.

30

Gan, W.; Han, N. N.; Yang, C.; Wu, P.; Liu, Q.; Zhu, W.; Chen, S. M.; Wu, C. Q.; Habib, M.; Sang, Y. et al. A ternary alloy substrate to synthesize monolayer graphene with liquid carbon precursor. ACS Nano 2017, 11, 1371-1379.

31

Koenig, S. P.; Doganov, R. A.; Seixas, L.; Carvalho, A.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Yakovlev, N.; Castro Neto, A. H.; Özyilmaz, B. Electron doping of ultrathin black phosphorus with Cu Adatoms. Nano Lett. 2016, 16, 2145-2151.

32

Lee, P. A.; Said, G.; Davis, R.; Lim, T. H. On the optical properties of some layer compounds. J. Phys. Chem. Solids 1969, 30, 2719-2729.

33

Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. -J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311-1314.

34

Shi, S. -F.; Wang, F. Two-dimensional materials: Atomically thin p-n junctions. Nat. Nanotechnol. 2014, 9, 664-665.

35

Niu, T. C.; Li, A. From two-dimensional materials to heterostructures. Prog. Surf. Sci. 2015, 90, 21-45.

36

Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 2014, 13, 1096-1101.

37

Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.

38

Lee, D. S.; Riedl, C.; Beringer, T.; Neto, A. C.; von Klitzing, K.; Starke, U.; Smet, J. H. Quantum Hall effect in twisted bilayer graphene. Phys. Rev. Lett. 2011, 107, 216602.

39

Abanin, D. A.; Pesin, D. A. Interaction-induced topological insulator states in strained graphene. Phys. Rev. Lett. 2012, 109, 066802.

40

Bao, C. H.; Yao, W.; Wang, E. Y.; Chen, C. Y.; Avila, J.; Asensio, M. C.; Zhou, S. Y. Stacking-dependent electronic structure of trilayer graphene resolved by nanospot angle-resolved photoemission spectroscopy. Nano Lett. 2017, 17, 1564-1568.

41

Han, W.; Kawakami, R. K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 9, 794-807.

42

Tributsch, H. Photo-intercalation: Possible application in solar energy devices. Appl. Phys. 1980, 23, 61-71.

43

Wang, Y. -L.; Xu, Y.; Jiang, Y. -P.; Liu, J. -W.; Chang, C. -Z.; Chen, M.; Li, Z.; Song, C. -L.; Wang, L. -L.; He, K. et al. Structural defects and electronic properties of the Cu-doped topological insulator Bi2Se3. Phys. Rev. B 2011, 84, 075335.

44

Kang, M. G.; Kim, B.; Ryu, S. H.; Jung, S. W.; Kim, J.; Moreschini, L.; Jozwiak, C.; Rotenberg, E.; Bostwick, A.; Kim, K. S. Universal mechanism of band-gap engineering in transition-metal dichalcogenides. Nano Lett. 2017, 17, 1610-1615.

45

Ruppert, C.; Aslan, O. B.; Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 2014, 14, 6231-6236.

46

Nair, M. N.; Palacio, I.; Celis, A.; Zobelli, A.; Gloter, A.; Kubsky, S.; Turmaud, J. P.; Conrad, M.; Berger, C.; de Heer, W. et al. Band gap opening induced by the structural periodicity in epitaxial graphene buffer layer. Nano Lett. 2017, 17, 2681-2689.

47

Zhao, J. F.; Ou, H. W.; Wu, G.; Xie, B. P.; Zhang, Y.; Shen, D. W.; Wei, J.; Yang, L. X.; Dong, J. K.; Arita, M. et al. Evolution of the electronic structure of 1T-CuxTiSe2. Phys. Rev. Lett. 2007, 99, 146401.

48

Liu, Q. M.; Ishikawa, R.; Funada, S.; Ohki, T.; Ueno, K.; Shirai, H. Highly efficient solution-processed poly(3, 4-ethylenedio-xythiophene): poly(styrenesulfonate)/crystalline-silicon heterojunction solar cells with improved light-induced stability. Adv. Energy Mater. 2015, 5, 1500744.

49

Morosan, E.; Zandbergen, H. W.; Dennis, B. S.; Bos, J. W. G.; Onose, Y.; Klimczuk, T.; Ramirez, A. P.; Ong, N. P.; Cava, R. J. Superconductivity in CuxTiSe2. Nat. Phys. 2006, 2, 544-550.

50

Xu, S. -Y.; Xia, Y.; Wray, L. A.; Jia, S.; Meier, F.; Dil, J. H.; Osterwalder, J.; Slomski, B.; Bansil, A.; Lin, H. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 2011, 332, 560-564.

51

Caputo, M.; Panighel, M.; Lisi, S.; Khalil, L.; Di Santo, G.; Papalazarou, E.; Hruban, A.; Konczykowski, M.; Krusin-Elbaum, L.; Aliev, Z. S. et al. Manipulating the topological interface by molecular adsorbates: Adsorption of Co-phthalocyanine on Bi2Se3. Nano Lett. 2016, 16, 3409-3414.

52

Machado, A. J. S.; Baptista, N. P.; de Lima, B. S.; Chaia, N.; Grant, T. W.; Corrêa, L. E.; Renosto, S. T.; Scaramussa, A. C.; Jardim, R. F.; Torikachvili, M. S. et al. Evidence for topological behavior in superconducting CuxZrTe2-y. Phys. Rev. B 2017, 95, 144505.

53

Tsipas, P.; Tsoutsou, D.; Fragkos, S.; Sant, R.; Alvarez, C.; Okuno, H.; Renaud, G.; Alcotte, R.; Baron, T.; Dimoulas, A. Massless Dirac fermions in ZrTe2 Semimetal grown on InAs(111) by van der Waals epitaxy. ACS Nano 2018, 12, 1696-1703.

54

Song, S.; Keum, D. H.; Cho, S.; Perello, D.; Kim, Y.; Lee, Y. H. Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain. Nano Lett. 2015, 16, 188-193.

55

Gong, Y. J.; Yuan, H. T.; Wu, C. L.; Tang, P. Z.; Yang, S. Z.; Yang, A. K.; Li, G. D.; Liu, B. F.; van de Groep, J.; Brongersma, M. L. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 2018, 13, 294-299.

56

Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231-236.

57

Rhodes, D.; Chenet, D. A.; Janicek, B. E.; Nyby, C.; Lin, Y.; Jin, W.; Edelberg, D.; Mannebach, E.; Finney, N.; Antony, A. et al. Engineering the structural and electronic phases of MoTe2 through W substitution. Nano Lett. 2017, 17, 1616-1622.

58

Hashimoto, M.; Vishik, I. M.; He, R. -H.; Devereaux, T. P.; Shen, Z. -X. Energy gaps in high-transition-temperature cuprate superconductors. Nat. Phys. 2014, 10, 483-495.

59

Chen, P.; Chan, Y. -H.; Fang, X. -Y.; Zhang, Y.; Chou, M. -Y.; Mo, S. -K.; Hussain, Z.; Fedorov, A. -V.; Chiang, T. -C. Charge density wave transition in single-layer titanium diselenide. Nat. Commun. 2015, 6, 8943.

60

Mo, S. -K. Angle-resolved photoemission spectroscopy for the study of two-dimensional materials. Nano Converg. 2017, 4, 6.

61

Kuang, M.; Li, T. T.; Chen, H.; Zhang, S. M.; Zhang, L. L.; Zhang, Y. X. Hierarchical Cu2O/CuO/Co3O4 core-shell nanowires: Synthesis and electrochemical properties. Nanotechnology 2015, 26, 304002.

62

Moustafa, M.; Ghafari, A.; Paulheim, A.; Janowitz, C.; Manzke, R. Spin orbit splitting in the valence bands of ZrSxSe2-x: Angle resolved photoemission and density functional theory. J. Electron Spectrosc. Relat. Phenom. 2013, 189, 35-39.

Nano Research
Pages 4914-4922
Cite this article:
Muhammad Z, Mu K, Lv H, et al. Electron doping induced semiconductor to metal transitions in ZrSe2 layers via copper atomic intercalation. Nano Research, 2018, 11(9): 4914-4922. https://doi.org/10.1007/s12274-018-2081-1

712

Views

39

Crossref

N/A

Web of Science

38

Scopus

4

CSCD

Altmetrics

Received: 22 February 2018
Revised: 21 April 2018
Accepted: 24 April 2018
Published: 09 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return