AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Stressed carbon nanotube devices for high tunability, high quality factor, single mode GHz resonators

Xinhe Wang1,4,5,§Dong Zhu2,§Xinhe Yang1,5Long Yuan2Haiou Li2Jiangtao Wang1,5Mo Chen1Guangwei Deng2Wenjie Liang3Qunqing Li1,5Shoushan Fan1,5Guoping Guo2( )Kaili Jiang1,5( )
State Key Laboratory of Low-Dimensional Quantum PhysicsDept. of Physics and Tsinghua-Foxconn Nanotechnology Research CenterTsinghua UniversityBeijing100084China
Key Laboratory of Quantum InformationCASUniversity of Science and Technology of ChinaHefei230026China
Institute of PhysicsChinese Academy of SciencesBeijing100080China
Fert Beijing Research InstituteSchool of Electrical and Information EngineeringBDBCBeihang UniversityBeijing100191China
Collaborative Innovation Center of Quantum MatterBeijing100084China

§ Xinhe Wang and Dong Zhu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The emerging applications of nanoelectromechanical systems (NEMS) in ground-state cooling, quantum manipulation, communication devices, etc., call for a nanoresonator with high frequency, quality factor, and tunability, as well as easy integration. Here we show that such a nanoresonator can be achieved by using a unique assembly technique that transfers the stressed inner shell of carbon nanotubes (CNTs) to a self-aligned device geometry. The as-fabricated nanoresonator shows excellent comprehensive performance, i.e., high frequency (2–3 GHz), high tunability (80–110 MHz/V), high quality factor (3 × 104), and single mode operation. The defect-free nature of the inner shell of the CNT gives rise to a high quality factor, and the preloaded tension improves the resonant frequency and tunability. This resonator with excellent performance also enables the integration of homogeneous devices and will play a key role in the emerging applications of NEMS.

References

1

Jensen, K.; Kim, K.; Zettl, A. An atomic-resolution nano-mechanical mass sensor. Nat. Nanotechnol. 2008, 3, 533-537.

2

Chiu, H. -Y.; Hung, P.; Postma, H. W. C.; Bockrath, M. Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett. 2008, 8, 4342-4346.

3

Chaste, J.; Eichler, A.; Moser, J.; Ceballos, G.; Rurali, R.; Bachtold, A. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 2012, 7, 301-304.

4

Moser, J.; Güttinger, J.; Eichler, A.; Esplandiu, M. J.; Liu, D. E.; Dykman, M. I.; Bachtold, A. Ultrasensitive force detection with a nanotube mechanical resonator. Nat. Nanotechnol. 2013, 8, 493-496.

5

Ganzhorn, M.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W. Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nat. Nanotechnol. 2013, 8, 165-169.

6

O'Connell, A. D.; Hofheinz, M.; Ansmann, M.; Bialczak, R. C.; Lenander, M.; Lucero, E.; Neeley, M.; Sank, D.; Wang, H.; Weides, M. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 2010, 464, 697-703.

7

Wollman, E. E.; Lei, C. U.; Weinstein, A. J.; Suh, J.; Kronwald, A.; Marquardt, F.; Clerk, A. A.; Schwab, K. C. Quantum squeezing of motion in a mechanical resonator. Science 2015, 349, 952-955.

8

Schneider, B. H.; Etaki, S.; van der Zant, H. S. J.; Steele, G. A. Coupling carbon nanotube mechanics to a superconducting circuit. Sci. Rep. 2012, 2, 599.

9

Zippilli, S.; Morigi, G.; Bachtold, A. Cooling carbon nanotubes to the phononic ground state with a constant electron current. Phys. Rev. Lett. 2009, 102, 096804.

10

Nguyen, C. T. C.; Wong, A. -C.; Ding, H. Tunable, switchable, high-Q VHF microelectromechanical bandpass filters. In Proceedings of the 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, 1999, pp 78-79.

11

Feng, X. L.; White, C. J.; Hajimiri, A.; Roukes, M. L. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. Nat. Nanotechnol. 2008, 3, 342-346.

12

Massel, F.; Heikkilä, T. T.; Pirkkalainen, J. -M.; Cho, S. U.; Saloniemi, H.; Hakonen, P. J.; Sillanpää, M. A. Microwave amplification with nanomechanical resonators. Nature 2011, 480, 351-354.

13

Lassagne, B.; Garcia-Sanchez, D.; Aguasca, A.; Bachtold, A. Ultrasensitive mass sensing with a nanotube electromechanical resonator. Nano Lett. 2008, 8, 3735-3738.

14

Natsuki, T.; Matsuyama, N.; Shi, J. -X.; Ni, Q. -Q. Vibration analysis of nanomechanical mass sensor using carbon nanotubes under axial tensile loads. Appl. Phys. A 2014, 116, 1001-1007.

15

Jensen, K.; Weldon, J.; Garcia, H.; Zettl, A. Nanotube radio. Nano Lett. 2007, 7, 3508-3511.

16

Zhang, W. -M.; Hu, K. -M.; Peng, Z. -K.; Meng, G. Tunable micro- and nanomechanical resonators. Sensors 2015, 15, 26478-26566.

17

Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971-1975.

18

Chaste, J.; Sledzinska, M.; Zdrojek, M.; Moser, J.; Bachtold, A. High-frequency nanotube mechanical resonators. Appl. Phys. Lett. 2011, 99, 213502.

19

Laird, E. A.; Pei, F.; Tang, W.; Steele, G. A.; Kouwenhoven, L. P. A high quality factor carbon nanotube mechanical resonator at 39 GHz. Nano Lett. 2012, 12, 193-197.

20

Moser, J.; Eichler, A.; Güttinger, J.; Dykman, M. I.; Bachtold, A. Nanotube mechanical resonators with quality factors of up to 5 million. Nat. Nanotechnol. 2014, 9, 1007-1011.

21

Sazonova, V.; Yaish, Y.; üstünel, H.; Roundy, D.; Arias, T. A.; McEuen, P. L. A tunable carbon nanotube electromechanical oscillator. Nature 2004, 431, 284-287.

22

Wu, C. C.; Zhong, Z. H. Capacitive spring softening in single-walled carbon nanotube nanoelectromechanical resonators. Nano Lett. 2011, 11, 1448-1451.

23

Eichler, A.; del álamo Ruiz, M.; Plaza, J. A.; Bachtold, A. Strong coupling between mechanical modes in a nanotube resonator. Phys. Rev. Lett. 2012, 109, 025503.

24

Ning, Z. Y.; Shi, T. W.; Fu, M. Q.; Guo, Y.; Wei, X. L.; Gao, S.; Chen, Q. Transversally and axially tunable carbon nanotube resonators in situ fabricated and studied inside a scanning electron microscope. Nano Lett. 2014, 14, 1221-1227.

25

Witkamp, B.; Poot, M.; van der Zant, H. S. J. Bending-mode vibration of a suspended nanotube resonator. Nano Lett. 2006, 6, 2904-2908.

26

Schmid, D. R.; Stiller, P. L.; Strunk, C.; Hüttel, A. K. Magnetic damping of a carbon nanotube nano-electromechanical resonator. New J. Phys. 2012, 14, 083024.

27

Deng, G. -W.; Zhu, D.; Wang, X. -H.; Zou, C. -L.; Wang, J. -T.; Li, H. -O.; Cao, G.; Liu, D.; Li, Y.; Xiao, M. et al. Strongly coupled nanotube electromechanical resonators. Nano Lett. 2016, 16, 5456-5462.

28

Mahboob, I.; Yamaguchi, H. Bit storage and bit flip operations in an electromechanical oscillator. Nat. Nanotechnol. 2008, 3, 275-279.

29

Unterreithmeier, Q. P.; Weig, E. M.; Kotthaus, J. P. Universal transduction scheme for nanomechanical systems based on dielectric forces. Nature 2009, 458, 1001-1004.

30

Steele, G. A.; Hüttel, A. K.; Witkamp, B.; Poot, M.; Meerwaldt, H. B.; Kouwenhoven, L. P.; van der Zant, H. S. J. Strong coupling between single-electron tunneling and nanomechanical motion. Science 2009, 325, 1103-1107.

31

Lassagne, B.; Tarakanov, Y.; Kinaret, J.; Garcia-Sanchez, D.; Bachtold, A. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 2009, 325, 1107-1110.

32

Sohn, L. L.; Kouwenhoven, L. P.; Schön, G. Mesoscopic Electron Transport; Springer: Netherlands, 1997; Vol. 345.

33

Tans, S. J.; Devoret, M. H.; Dai, H. J.; Thess, A.; Smalley, R. E.; Geerligs, L. J.; Dekker, C. Individual single-wall carbon nanotubes as quantum wires. Nature 1997, 386, 474-477.

34

Bockrath, M.; Cobden, D. H.; McEuen, P. L.; Chopra, N. G.; Zettl, A.; Thess, A.; Smalley, R. E. Single-electron transport in ropes of carbon nanotubes. Science 1997, 275, 1922-1925.

35

Leturcq, R.; Stampfer, C.; Inderbitzin, K.; Durrer, L.; Hierold, C.; Mariani, E.; Schultz, M. G.; von Oppen, F.; Ensslin, K. Franck-Condon blockade in suspended carbon nanotube quantum dots. Nat. Phys. 2009, 5, 327-331.

36

Island, J. O.; Tayari, V.; McRae, A. C.; Champagne, A. R. Few-hundred GHz carbon nanotube nanoelectromechanical systems (NEMS). Nano Lett. 2012, 12, 4564-4569.

37

Aykol, M.; Hou, B. Y.; Dhall, R.; Chang, S. -W.; Branham, W.; Qiu, J.; Cronin, S. B. Clamping instability and van der Waals forces in carbon nanotube mechanical resonators. Nano Lett. 2014, 14, 2426-2430.

38

Barnard, A. W.; Sazonova, V.; van der Zande, A. M.; McEuen, P. L. Fluctuation broadening in carbon nanotube resonators. Proc. Natl. Acad. Sci. USA 2012, 109, 19093-19096.

39

Verbridge, S. S.; Shapiro, D. F.; Craighead, H. G.; Parpia, J. M. Macroscopic tuning of nanomechanics: Substrate bending for reversible control of frequency and quality factor of nanostring resonators. Nano Lett. 2007, 7, 1728-1735.

40

Hüttel, A. K.; Steele, G. A.; Witkamp, B.; Poot, M.; Kouwenhoven, L. P.; van der Zant, H. S. J. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 2009, 9, 2547-2552.

41

Eichler, A.; Moser, J.; Chaste, J.; Zdrojek, M.; Wilson-Rae, I.; Bachtold, A. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol. 2011, 6, 339-342.

42

Antonio, D.; Zanette, D. H.; López, D. Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 2012, 3, 806.

43

Ning, Z. Y.; Fu, M. Q.; Wu, G. T.; Qiu, C. G.; Shu, J. P.; Guo, Y.; Wei, X. L.; Gao, S.; Chen, Q. Remarkable influence of slack on the vibration of a single-walled carbon nanotube resonator. Nanoscale 2016, 8, 8658-8665.

44

Li, S. -X.; Zhu, D.; Wang, X. -H.; Wang, J. -T.; Deng, G. -W.; Li, H. -O.; Cao, G.; Xiao, M.; Guo, G. -C.; Jiang, K. -L. et al. Parametric strong mode-coupling in carbon nanotube mechanical resonators. Nanoscale 2016, 8, 14809-14813.

45

Castellanos-Gomez, A.; Meerwaldt, H. B.; Venstra, W. J.; van der Zant, H. S. J.; Steele, G. A. Strong and tunable mode coupling in carbon nanotube resonators. Phys. Rev. B 2012, 86, 041402.

46

Ouakad, H. M.; Younis, M. I. Dynamic response of slacked single-walled carbon nanotube resonators. Nonlinear Dyn. 2012, 67, 1419-1436.

47

Zhu, D.; Wang, X. -H.; Kong, W. -C.; Deng, G. -W.; Wang, J. -T.; Li, H. -O.; Cao, G.; Xiao, M.; Jiang, K. -L.; Dai, X. -C. et al. Coherent phonon Rabi oscillations with a high-frequency carbon nanotube phonon cavity. Nano Lett. 2017, 17, 915-921.

48

Landau, L. D.; Lifshitz, E. M. Theory of Elasticity, Vol. 7. Course of Theoretical Physics, 3rd ed.; Butterworth-Heinemann: Oxford, 1986.

49

Ke, C. H.; Espinosa, H. D. Numerical analysis of nanotube-based NEMS devices—Part I: Electrostatic charge distribution on multiwalled nanotubes. J. Appl. Mech. 2005, 72, 721-725.

50

Kociak, M.; Suenaga, K.; Hirahara, K.; Saito, Y.; Nakahira, T.; Iijima, S. Linking chiral indices and transport properties of double-walled carbon nanotubes. Phys. Rev. Lett. 2002, 89, 155501.

51

Pfeiffer, R.; Pichler, T.; Kim, Y. A.; Kuzmany, H. Double-wall carbon nanotubes. In Carbon Nanotubes; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S., Eds.; Springer: Berlin, Heidelberg, 2007; Vol. 111, pp 495-530.

52

Moore, K. E.; Tune, D. D.; Flavel, B. S. Double-walled carbon nanotube processing. Adv. Mater. 2015, 27, 3105-3137.

53

Peng, H. B.; Chang, C. W.; Aloni, S.; Yuzvinsky, T. D.; Zettl, A. Ultrahigh frequency nanotube resonators. Phys. Rev. Lett. 2006, 97, 087203.

54

Meerwaldt, H. B.; Johnston, S. R.; van der Zant, H. S. J.; Steele, G. A. Submicrosecond-timescale readout of carbon nanotube mechanical motion. Appl. Phys. Lett. 2013, 103, 053121.

55

Gouttenoire, V.; Barois, T.; Perisanu, S.; Leclercq, J. -L.; Purcell, S. T.; Vincent, P.; Ayari, A. Digital and FM demodulation of a doubly clamped single-walled carbon-nanotube oscillator: Towards a nanotube cell phone. Small 2010, 6, 1060-1065.

56

Eichler, A.; Chaste, J.; Moser, J.; Bachtold, A. Parametric amplification and self-oscillation in a nanotube mechanical resonator. Nano Lett. 2011, 11, 2699-2703.

Nano Research
Pages 5812-5822
Cite this article:
Wang X, Zhu D, Yang X, et al. Stressed carbon nanotube devices for high tunability, high quality factor, single mode GHz resonators. Nano Research, 2018, 11(11): 5812-5822. https://doi.org/10.1007/s12274-018-2085-x

761

Views

14

Crossref

N/A

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 13 December 2017
Revised: 25 April 2018
Accepted: 26 April 2018
Published: 18 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return