Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The emerging applications of nanoelectromechanical systems (NEMS) in ground-state cooling, quantum manipulation, communication devices, etc., call for a nanoresonator with high frequency, quality factor, and tunability, as well as easy integration. Here we show that such a nanoresonator can be achieved by using a unique assembly technique that transfers the stressed inner shell of carbon nanotubes (CNTs) to a self-aligned device geometry. The as-fabricated nanoresonator shows excellent comprehensive performance, i.e., high frequency (2–3 GHz), high tunability (80–110 MHz/V), high quality factor (3 × 104), and single mode operation. The defect-free nature of the inner shell of the CNT gives rise to a high quality factor, and the preloaded tension improves the resonant frequency and tunability. This resonator with excellent performance also enables the integration of homogeneous devices and will play a key role in the emerging applications of NEMS.
Jensen, K.; Kim, K.; Zettl, A. An atomic-resolution nano-mechanical mass sensor. Nat. Nanotechnol. 2008, 3, 533-537.
Chiu, H. -Y.; Hung, P.; Postma, H. W. C.; Bockrath, M. Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett. 2008, 8, 4342-4346.
Chaste, J.; Eichler, A.; Moser, J.; Ceballos, G.; Rurali, R.; Bachtold, A. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 2012, 7, 301-304.
Moser, J.; Güttinger, J.; Eichler, A.; Esplandiu, M. J.; Liu, D. E.; Dykman, M. I.; Bachtold, A. Ultrasensitive force detection with a nanotube mechanical resonator. Nat. Nanotechnol. 2013, 8, 493-496.
Ganzhorn, M.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W. Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nat. Nanotechnol. 2013, 8, 165-169.
O'Connell, A. D.; Hofheinz, M.; Ansmann, M.; Bialczak, R. C.; Lenander, M.; Lucero, E.; Neeley, M.; Sank, D.; Wang, H.; Weides, M. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 2010, 464, 697-703.
Wollman, E. E.; Lei, C. U.; Weinstein, A. J.; Suh, J.; Kronwald, A.; Marquardt, F.; Clerk, A. A.; Schwab, K. C. Quantum squeezing of motion in a mechanical resonator. Science 2015, 349, 952-955.
Schneider, B. H.; Etaki, S.; van der Zant, H. S. J.; Steele, G. A. Coupling carbon nanotube mechanics to a superconducting circuit. Sci. Rep. 2012, 2, 599.
Zippilli, S.; Morigi, G.; Bachtold, A. Cooling carbon nanotubes to the phononic ground state with a constant electron current. Phys. Rev. Lett. 2009, 102, 096804.
Nguyen, C. T. C.; Wong, A. -C.; Ding, H. Tunable, switchable, high-Q VHF microelectromechanical bandpass filters. In Proceedings of the 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, 1999, pp 78-79.
Feng, X. L.; White, C. J.; Hajimiri, A.; Roukes, M. L. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. Nat. Nanotechnol. 2008, 3, 342-346.
Massel, F.; Heikkilä, T. T.; Pirkkalainen, J. -M.; Cho, S. U.; Saloniemi, H.; Hakonen, P. J.; Sillanpää, M. A. Microwave amplification with nanomechanical resonators. Nature 2011, 480, 351-354.
Lassagne, B.; Garcia-Sanchez, D.; Aguasca, A.; Bachtold, A. Ultrasensitive mass sensing with a nanotube electromechanical resonator. Nano Lett. 2008, 8, 3735-3738.
Natsuki, T.; Matsuyama, N.; Shi, J. -X.; Ni, Q. -Q. Vibration analysis of nanomechanical mass sensor using carbon nanotubes under axial tensile loads. Appl. Phys. A 2014, 116, 1001-1007.
Jensen, K.; Weldon, J.; Garcia, H.; Zettl, A. Nanotube radio. Nano Lett. 2007, 7, 3508-3511.
Zhang, W. -M.; Hu, K. -M.; Peng, Z. -K.; Meng, G. Tunable micro- and nanomechanical resonators. Sensors 2015, 15, 26478-26566.
Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971-1975.
Chaste, J.; Sledzinska, M.; Zdrojek, M.; Moser, J.; Bachtold, A. High-frequency nanotube mechanical resonators. Appl. Phys. Lett. 2011, 99, 213502.
Laird, E. A.; Pei, F.; Tang, W.; Steele, G. A.; Kouwenhoven, L. P. A high quality factor carbon nanotube mechanical resonator at 39 GHz. Nano Lett. 2012, 12, 193-197.
Moser, J.; Eichler, A.; Güttinger, J.; Dykman, M. I.; Bachtold, A. Nanotube mechanical resonators with quality factors of up to 5 million. Nat. Nanotechnol. 2014, 9, 1007-1011.
Sazonova, V.; Yaish, Y.; üstünel, H.; Roundy, D.; Arias, T. A.; McEuen, P. L. A tunable carbon nanotube electromechanical oscillator. Nature 2004, 431, 284-287.
Wu, C. C.; Zhong, Z. H. Capacitive spring softening in single-walled carbon nanotube nanoelectromechanical resonators. Nano Lett. 2011, 11, 1448-1451.
Eichler, A.; del álamo Ruiz, M.; Plaza, J. A.; Bachtold, A. Strong coupling between mechanical modes in a nanotube resonator. Phys. Rev. Lett. 2012, 109, 025503.
Ning, Z. Y.; Shi, T. W.; Fu, M. Q.; Guo, Y.; Wei, X. L.; Gao, S.; Chen, Q. Transversally and axially tunable carbon nanotube resonators in situ fabricated and studied inside a scanning electron microscope. Nano Lett. 2014, 14, 1221-1227.
Witkamp, B.; Poot, M.; van der Zant, H. S. J. Bending-mode vibration of a suspended nanotube resonator. Nano Lett. 2006, 6, 2904-2908.
Schmid, D. R.; Stiller, P. L.; Strunk, C.; Hüttel, A. K. Magnetic damping of a carbon nanotube nano-electromechanical resonator. New J. Phys. 2012, 14, 083024.
Deng, G. -W.; Zhu, D.; Wang, X. -H.; Zou, C. -L.; Wang, J. -T.; Li, H. -O.; Cao, G.; Liu, D.; Li, Y.; Xiao, M. et al. Strongly coupled nanotube electromechanical resonators. Nano Lett. 2016, 16, 5456-5462.
Mahboob, I.; Yamaguchi, H. Bit storage and bit flip operations in an electromechanical oscillator. Nat. Nanotechnol. 2008, 3, 275-279.
Unterreithmeier, Q. P.; Weig, E. M.; Kotthaus, J. P. Universal transduction scheme for nanomechanical systems based on dielectric forces. Nature 2009, 458, 1001-1004.
Steele, G. A.; Hüttel, A. K.; Witkamp, B.; Poot, M.; Meerwaldt, H. B.; Kouwenhoven, L. P.; van der Zant, H. S. J. Strong coupling between single-electron tunneling and nanomechanical motion. Science 2009, 325, 1103-1107.
Lassagne, B.; Tarakanov, Y.; Kinaret, J.; Garcia-Sanchez, D.; Bachtold, A. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 2009, 325, 1107-1110.
Sohn, L. L.; Kouwenhoven, L. P.; Schön, G. Mesoscopic Electron Transport; Springer: Netherlands, 1997; Vol. 345.
Tans, S. J.; Devoret, M. H.; Dai, H. J.; Thess, A.; Smalley, R. E.; Geerligs, L. J.; Dekker, C. Individual single-wall carbon nanotubes as quantum wires. Nature 1997, 386, 474-477.
Bockrath, M.; Cobden, D. H.; McEuen, P. L.; Chopra, N. G.; Zettl, A.; Thess, A.; Smalley, R. E. Single-electron transport in ropes of carbon nanotubes. Science 1997, 275, 1922-1925.
Leturcq, R.; Stampfer, C.; Inderbitzin, K.; Durrer, L.; Hierold, C.; Mariani, E.; Schultz, M. G.; von Oppen, F.; Ensslin, K. Franck-Condon blockade in suspended carbon nanotube quantum dots. Nat. Phys. 2009, 5, 327-331.
Island, J. O.; Tayari, V.; McRae, A. C.; Champagne, A. R. Few-hundred GHz carbon nanotube nanoelectromechanical systems (NEMS). Nano Lett. 2012, 12, 4564-4569.
Aykol, M.; Hou, B. Y.; Dhall, R.; Chang, S. -W.; Branham, W.; Qiu, J.; Cronin, S. B. Clamping instability and van der Waals forces in carbon nanotube mechanical resonators. Nano Lett. 2014, 14, 2426-2430.
Barnard, A. W.; Sazonova, V.; van der Zande, A. M.; McEuen, P. L. Fluctuation broadening in carbon nanotube resonators. Proc. Natl. Acad. Sci. USA 2012, 109, 19093-19096.
Verbridge, S. S.; Shapiro, D. F.; Craighead, H. G.; Parpia, J. M. Macroscopic tuning of nanomechanics: Substrate bending for reversible control of frequency and quality factor of nanostring resonators. Nano Lett. 2007, 7, 1728-1735.
Hüttel, A. K.; Steele, G. A.; Witkamp, B.; Poot, M.; Kouwenhoven, L. P.; van der Zant, H. S. J. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 2009, 9, 2547-2552.
Eichler, A.; Moser, J.; Chaste, J.; Zdrojek, M.; Wilson-Rae, I.; Bachtold, A. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol. 2011, 6, 339-342.
Antonio, D.; Zanette, D. H.; López, D. Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 2012, 3, 806.
Ning, Z. Y.; Fu, M. Q.; Wu, G. T.; Qiu, C. G.; Shu, J. P.; Guo, Y.; Wei, X. L.; Gao, S.; Chen, Q. Remarkable influence of slack on the vibration of a single-walled carbon nanotube resonator. Nanoscale 2016, 8, 8658-8665.
Li, S. -X.; Zhu, D.; Wang, X. -H.; Wang, J. -T.; Deng, G. -W.; Li, H. -O.; Cao, G.; Xiao, M.; Guo, G. -C.; Jiang, K. -L. et al. Parametric strong mode-coupling in carbon nanotube mechanical resonators. Nanoscale 2016, 8, 14809-14813.
Castellanos-Gomez, A.; Meerwaldt, H. B.; Venstra, W. J.; van der Zant, H. S. J.; Steele, G. A. Strong and tunable mode coupling in carbon nanotube resonators. Phys. Rev. B 2012, 86, 041402.
Ouakad, H. M.; Younis, M. I. Dynamic response of slacked single-walled carbon nanotube resonators. Nonlinear Dyn. 2012, 67, 1419-1436.
Zhu, D.; Wang, X. -H.; Kong, W. -C.; Deng, G. -W.; Wang, J. -T.; Li, H. -O.; Cao, G.; Xiao, M.; Jiang, K. -L.; Dai, X. -C. et al. Coherent phonon Rabi oscillations with a high-frequency carbon nanotube phonon cavity. Nano Lett. 2017, 17, 915-921.
Landau, L. D.; Lifshitz, E. M. Theory of Elasticity, Vol. 7. Course of Theoretical Physics, 3rd ed.; Butterworth-Heinemann: Oxford, 1986.
Ke, C. H.; Espinosa, H. D. Numerical analysis of nanotube-based NEMS devices—Part I: Electrostatic charge distribution on multiwalled nanotubes. J. Appl. Mech. 2005, 72, 721-725.
Kociak, M.; Suenaga, K.; Hirahara, K.; Saito, Y.; Nakahira, T.; Iijima, S. Linking chiral indices and transport properties of double-walled carbon nanotubes. Phys. Rev. Lett. 2002, 89, 155501.
Pfeiffer, R.; Pichler, T.; Kim, Y. A.; Kuzmany, H. Double-wall carbon nanotubes. In Carbon Nanotubes; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S., Eds.; Springer: Berlin, Heidelberg, 2007; Vol. 111, pp 495-530.
Moore, K. E.; Tune, D. D.; Flavel, B. S. Double-walled carbon nanotube processing. Adv. Mater. 2015, 27, 3105-3137.
Peng, H. B.; Chang, C. W.; Aloni, S.; Yuzvinsky, T. D.; Zettl, A. Ultrahigh frequency nanotube resonators. Phys. Rev. Lett. 2006, 97, 087203.
Meerwaldt, H. B.; Johnston, S. R.; van der Zant, H. S. J.; Steele, G. A. Submicrosecond-timescale readout of carbon nanotube mechanical motion. Appl. Phys. Lett. 2013, 103, 053121.
Gouttenoire, V.; Barois, T.; Perisanu, S.; Leclercq, J. -L.; Purcell, S. T.; Vincent, P.; Ayari, A. Digital and FM demodulation of a doubly clamped single-walled carbon-nanotube oscillator: Towards a nanotube cell phone. Small 2010, 6, 1060-1065.
Eichler, A.; Chaste, J.; Moser, J.; Bachtold, A. Parametric amplification and self-oscillation in a nanotube mechanical resonator. Nano Lett. 2011, 11, 2699-2703.