AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Pyridine-induced interfacial structural transformation of tetraphenylethylene derivatives investigated by scanning tunneling microscopy

Xuan Peng1,§Linxiu Cheng1,§Xiaoyang Zhu1Yanfang Geng1( )Fengying Zhao2,3( )Kandong Hu2Xuan Guo2Ke Deng1( )Qingdao Zeng1( )
CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology (NCNST)No.11 ZhongguancunBeiyitiaoBeijing100190China
Jiangxi College of Applied TechnologyGanzhou341000China
Engineering Research Center of Nano-Geo Materials of Ministry of EducationChina University of GeosciencesWuhan430074China

§ Xuan Peng and Linxiu Cheng contributed equally to this work.

Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Abstract

The two-dimensional self-assembly behaviors of tetraphenylethylene (TPE) molecules are significant for further applications, but reports are rare. The self-assembled structures of two C2-symmetry TPE derivatives (H4TCPE and H4ETTC) possessing propeller structures and their stimulus responses to the addition of vinylpyridine derivatives were thoroughly studied with the assistance of scanning tunneling microscopy (STM) technique in combination with density functional theory (DFT) calculations. Although their chemical structures were similar, the H4TCPE and H4ETTC molecules self-assembled into closely packed lamellar and quadrilateral structures, respectively, at the 1-heptanoic acid/HOPG interface. After the addition of pyridine derivatives (DPE, PEBP-C4, and PEBP-C8), H4TCPE and H4ETTC showed different responsiveness resulting in different co-assembly structures. The results indicated that the structures of pyridine derivatives—including backbones and substituents—affected the intermolecular interactions of both H4TCPE/pyridine and H4ETTC/pyridine systems. The modification of the self-assembly behaviors of propeller-shaped H4TCPE and H4ETTC would contribute to the construction of more complex multilevel nanostructures.

Electronic Supplementary Material

Download File(s)
12274_2018_2086_MOESM1_ESM.pdf (1.9 MB)

References

1

Zhao, E. G.; Chen, Y. L.; Chen, S. J.; Deng, H. Q.; Gui, C.; Leung, C. W. T.; Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. A luminogen with aggregation-induced emission characteristics for wash-free bacterial imaging, high-throughput antibiotics screening and bacterial susceptibility evaluation. Adv. Mater. 2015, 27, 4931-4937.

2

Xiong, J. B.; Feng, H. T.; Sun, J. P.; Xie, W. Z.; Yang, D.; Liu, M. H.; Zheng, Y. S. The fixed propeller-like conformation of tetraphenylethylene that reveals aggregation-induced emission effect, chiral recognition, and enhanced chiroptical property. J. Am. Chem. Soc. 2016, 138, 11469-11472.

3

Shi, J.; Zhang, S.; Zheng, M. M.; Deng, Q. C.; Zheng, C.; Li, J.; Huang, F. H. A novel fluorometric turn-on assay for lipase activity based on an aggregation-induced emission (AIE) luminogen. Sensor. Actuat. B: Chem. 2017, 238, 765-771.

4

Huang, J.; Sun, N.; Dong, Y. Q.; Tang, R. L.; Lu, P.; Cai, P.; Li, Q. Q.; Ma, D. G.; Qin, J. G.; Li, Z. Similar or totally different: The control of conjugation degree through minor structural modifications, and deep-blue aggregation-induced emission luminogens for non-doped OLEDs. Adv. Funct. Mater. 2013, 23, 2329-2337.

5

Li, Y. L.; Li, Z. P.; Wang, Y.; Compaan, A.; Ren, T. H.; Dong, W. J. Increasing the power output of a CdTe solar cell via luminescent down shifting molecules with intramolecular charge transfer and aggregation-induced emission characteristics. Energy Environ. Sci. 2013, 6, 2907-2911.

6

Zhao, Z. J.; Li, Z. F.; Lam, J. W. Y.; Maldonado, J. L.; Ramos-Ortiz, G.; Liu, Y.; Yuan, W. Z.; Xu, J. B.; Miao, Q.; Tang, B. Z. High hole mobility of 1, 2-bis[4'-(diphenylamino)biphenyl-4-yl]-1, 2-diphenylethene in field effect transistor. Chem. Commun. 2011, 47, 6924-6926.

7

Zhao, Z. J.; Chen, T. X.; Jiang, S. T.; Liu, Z. P.; Fang, D. C.; Dong, Y. Q. The construction of a multicolored mechanochromic luminogen with high contrast through the combination of a large conjugation core and peripheral phenyl rings. J. Mater. Chem. C 2016, 4, 4800-4804.

8

Chi, Z. G.; Zhang, X. Q.; Xu, B. J.; Zhou, X.; Ma, C. P.; Zhang, Y.; Liu, S. W.; Xu, J. R. Recent advances in organic mechanofluorochromic materials. Chem. Soc. Rev. 2012, 41, 3878-3896.

9

Hu, Z. C.; Lustig, W. P.; Zhang, J. M.; Zheng, C.; Wang, H.; Teat, S. J.; Gong, Q. H.; Rudd, N. D.; Li, J. Effective detection of mycotoxins by a highly luminescent metal-organic framework. J. Am. Chem. Soc. 2015, 137, 16209-16215.

10

Zhang, Q.; Su, J.; Feng, D. W.; Wei, Z. W.; Zou, X. D.; Zhou, H. C. Piezofluorochromic metal-organic framework: A microscissor lift. J. Am. Chem. Soc. 2015, 137, 10064-10067.

11

Dalapati, S.; Jin, E. Q.; Addicoat, M.; Heine, T.; Jiang, D. L. Highly emissive covalent organic frameworks. J. Am. Chem. Soc. 2016, 138, 5797-5800.

12

Pang, Z. F.; Xu, S. Q.; Zhou, T. Y.; Liang, R. R.; Zhan, T. G.; Zhao, X. Construction of covalent organic frameworks bearing three different kinds of pores through the hetero-structural mixed linker strategy. J. Am. Chem. Soc. 2016, 138, 4710-4713.

13

Shustova, N. B.; McCarthy, B. D.; Dincă, M. Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: An alternative to aggregation-induced emission. J. Am. Chem. Soc. 2011, 133, 20126-20129.

14

Wei, Z. W.; Gu, Z. Y.; Arvapally, R. K.; Chen, Y. P.; McDougald, R. N., Jr.; Ivy, J. F.; Yakovenko, A. A.; Feng, D. W.; Omary, M. A.; Zhou, H. C. Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement. J. Am. Chem. Soc. 2014, 136, 8269-8276.

15

Xu, H. B.; Wang, H. H.; Zhou, S. H.; Xiao, L. L.; Yan, Y.; Yuan, Q. H. A protocol of self-assembled monolayers of fluorescent block molecules for trace Zn(Ⅱ) sensing: Structures and mechanisms. RSC Adv. 2015, 5, 106061-106067.

16

Wang, W. H.; Wang, S. Y.; Hong, Y. N.; Tang, B. Z.; Lin, N. Selective supramolecular assembly of multifunctional ligands on a Cu(111) surface: Metallacycles, propeller trimers and linear chains. Chem. Commun. 2011, 47, 10073-10075.

17

Madueno, R.; Räisänen, M. T.; Silien, C.; Buck, M. Functionalizing hydrogen-bonded surface networks with self-assembled monolayers. Nature 2008, 454, 618-621.

18

Cai, L. L.; Sun, Q.; Bao, M. L.; Ma, H. H.; Yuan, C. X.; Xu, W. Competition between hydrogen bonds and coordination bonds steered by the surface molecular coverage. ACS Nano 2017, 11, 3727-3732.

19

Korolkov, V. V.; Baldoni, M.; Watanabe, K.; Taniguchi, T.; Besley, E.; Beton, P. H. Supramolecular heterostructures formed by sequential epitaxial deposition of two-dimensional hydrogen-bonded arrays. Nat. Chem. 2017, 9, 1191-1197.

20

Ahn, S.; Morrison, C. N.; Matzger, A. J. Highly symmetric 2D rhombic nanoporous networks arising from low symmetry amphiphiles. J. Am. Chem. Soc. 2009, 131, 7946-7947.

21

Gutzler, R.; Fu, C. Y.; Dadvand, A.; Hua, Y.; MacLeod, J. M.; Rosei, F.; Perepichka, D. F. Halogen bonds in 2D supramolecular self-assembly of organic semiconductors. Nanoscale 2012, 4, 5965-5971.

22

Chen, Q.; Chen, T.; Zhang, X.; Wan, L. J.; Liu, H. B.; Li, Y. L.; Stang, P. Two-dimensional OPV4 self-assembly and its coadsorption with alkyl bromide: From helix to lamellar. Chem. Commun. 2009, 3765-3767.

23

Heininger, C.; Kampschulte, L.; Heckl, W. M.; Lackinger, M. Distinct differences in self-assembly of aromatic linear dicarboxylic acids. Langmuir 2009, 25, 968-972.

24

Langner, A.; Tait, S. L.; Lin, N.; Chandrasekar, R.; Ruben, M.; Kern, K. Ordering and stabilization of metal-organic coordination chains by hierarchical assembly through hydrogen bonding at a surface. Angew. Chem., Int. Ed. 2008, 47, 8835-8838.

25

Blunt, M. O.; Russell, J. C.; Giménez-López, M. d. C.; Garrahan, J. P.; Lin, X.; Schröder, M.; Champness, N. R.; Beton, P. H. Random tiling and topological defects in a two-dimensional molecular network. Science 2008, 322, 1077-1081.

26

Gambardella, P.; Stepanow, S.; Dmitriev, A.; Honolka, J.; de Groot, F. M. F.; Lingenfelder, M.; Gupta, S. S.; Sarma, D. D.; Bencok, P.; Stanescu, S. et al. Supramolecular control of the magnetic anisotropy in two-dimensional high-spin Fe arrays at a metal interface. Nat. Mater. 2009, 8, 189-193.

27

Cai, L. X.; Wang, L. C.; Kang, S. Z.; Geng, Y. F.; Deng, K.; Zheng, Q. Y.; Zeng, Q. D. Supramolecular self-assembly of hexaphenylbenzene derivatives with different symmetry and number of carboxylic acid at liquid/solid interfaces. J. Phys. Chem. C 2016, 120, 27259-27267.

28

Dai, H. L.; Yi, W. J.; Deng, K.; Wang, H.; Zeng, Q. D. Formation of coronene clusters in concentration and temperature controlled two-dimensional porous network. ACS Appl. Mater. Interfaces 2016, 8, 21095-21100.

29

Gutzler, R.; Sirtl, T.; Dienstmaier, J. F.; Mahata, K.; Heckl, W. M.; Schmittel, M.; Lackinger, M. Reversible phase transitions in self-assembled monolayers at the liquid-solid interface: Temperature-controlled opening and closing of nanopores. J. Am. Chem. Soc. 2010, 132, 5084-5090.

30

Kampschulte, L.; Werblowsky, T. L.; Kishore, R. S. K.; Schmittel, M.; Heckl, W. M.; Lackinger, M. Thermodynamical equilibrium of binary supramolecular networks at the liquid-solid interface. J. Am. Chem. Soc. 2008, 130, 8502-8507.

31

MacLeod, J. M.; Lipton-Duffin, J.; Fu, C. Y.; Taerum, T.; Perepichka, D. F.; Rosei, F. A 2D substitutional solid solution through hydrogen bonding of molecular building blocks. ACS Nano 2017, 11, 8901-8909.

32

Dai, H. L.; Wang, S.; Hisaki, I.; Nakagawa, S.; Ikenaka, N.; Deng, K.; Xiao, X. W.; Zeng, Q. D. On-surface self-assembly of a C3-symmetric π-conjugated molecules family on surface studied by STM: Two-dimensional nanoporous frameworks. Chem. —Asian J. 2017, 12, 2558-2564.

33

Blunt, M. O.; Russell, J. C.; Gimenez-Lopez, M. d. C.; Taleb, N.; Lin, X.; Schröder, M.; Champness, N. R.; Beton, P. H. Guest-induced growth of a surface-based supramolecular bilayer. Nat. Chem. 2011, 3, 74-78.

34

Stannard, A.; Russell, J. C.; Blunt, M. O.; Salesiotis, C.; Giménez-López, M. d. C.; Taleb, N.; Schröder, M.; Champness, N. R.; Garrahan, J. P.; Beton, P. H. Broken symmetry and the variation of critical properties in the phase behaviour of supramolecular rhombus tilings. Nat. Chem. 2012, 4, 112-117.

35

Kapadia, P. P.; Ditzler, L. R.; Baltrusaitis, J.; Swenson, D. C.; Tivanski, A. V.; Pigge, F. C. Semiconducting organic assemblies prepared from tetraphenylethylene tetracarboxylic acid and bis(pyridine)s via charge-assisted hydrogen bonding. J. Am. Chem. Soc. 2011, 133, 8490-8493.

36

Samori, P. Scanning probe microscopies beyond imaging. J. Mater. Chem. 2004, 14, 1353-1366.

37

Yang, Y. L.; Wang, C. Hierarchical construction of self-assembled low-dimensional molecular architectures observed by using scanning tunneling microscopy. Chem. Soc. Rev. 2009, 38, 2576-2589.

38

Tian, G.; Shen, Y. X.; He, B. C.; Yu, Z. Q.; Song, F.; Lu, Y. H.; Wang, P. S.; Gao, Y. L.; Huang, H. Effects of monolayer Bi on the self-assembly of DBBA on Au(111). Surf. Sci. 2017, 665, 89-95.

39

Huang, H.; Tan, Z. Y.; He, Y. W.; Liu, J.; Sung, J. T.; Zhao, K.; Zhou, Z. H.; Tian, G.; Wong, S. L.; Wee, A. T. S. Competition between hexagonal and tetragonal hexabro-mobenzene packing on Au(111). ACS Nano 2016, 10, 3198-3205.

40

Li, M.; Yang, Y. L.; Zhao, K. Q.; Zeng, Q. D.; Wang, C. Bipyridine-mediated assembling characteristics of aromatic acid derivatives. J. Phys. Chem. C 2008, 112, 10141-10144.

41

Liang, H. L.; Sun, W.; Jin, X.; Li, H.; Li, J. L.; Hu, X. Q.; Teo, B. K.; Wu, K. Two-dimensional molecular porous networks formed by trimesic acid and 4, 4′-bis(4-pyridyl)biphenyl on Au(111) through hierarchical hydrogen bonds: Structural systematics and control of nanopore size and shape. Angew. Chem., Int. Ed. 2011, 50, 7562-7566.

42

Zhang, X. M.; Wang, S.; Shen, Y. T.; Guo, Y. Y.; Zeng, Q. D.; Wang, C. Two-dimensional networks of an azobenzene derivative: Bi-pyridine mediation and photo regulation. Nanoscale 2012, 4, 5039-5042.

43

Bhattacharjee, S.; Bhattacharya, S. Role of synergistic π-π stacking and X-H···Cl (X = C, N, O) H-bonding interactions in gelation and gel phase crystallization. Chem. Commun. 2015, 51, 7019-7022.

44

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756-7764.

45

Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244-13249.

Nano Research
Pages 5823-5834
Cite this article:
Peng X, Cheng L, Zhu X, et al. Pyridine-induced interfacial structural transformation of tetraphenylethylene derivatives investigated by scanning tunneling microscopy. Nano Research, 2018, 11(11): 5823-5834. https://doi.org/10.1007/s12274-018-2086-9

861

Views

27

Crossref

N/A

Web of Science

27

Scopus

6

CSCD

Altmetrics

Received: 08 February 2018
Revised: 01 May 2018
Accepted: 03 May 2018
Published: 18 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return