AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Organic-semiconductor: Polymer-electret blends for high-performance transistors

Peng Wei1Shengtao Li1( )Dongfan Li1Han Yu1Xudong Wang1Congcong Xu1Yaodong Yang1Laju Bu2( )Guanghao Lu1( )
Frontier Institute of Science and Technologyand State Key Laboratory of Electrical Insulation and Power EquipmentXi'an Jiaotong UniversityXi'an710054China
School of ScienceXi'an Jiaotong UniversityXi'an710049China
Show Author Information

Graphical Abstract

Abstract

As compared with polymer semiconductors, solution-processed small-molecule semiconductors usually have poorer film-formation properties, which induces wide variations in device performance in terms of mobility and threshold voltage, thus severely limiting their commercial applications. In this work, we propose an easily accessible method to improve the performance and reduce the variability of small-molecule organic field-effect transistors (OFETs) by blending organic semiconductors with an insulator polymer, which is subsequently post-treated by gate stress to generate an electret. By blending the organic semiconductor 2, 7-didodecyl[1]benzothieno[3, 2-b][1]benzothiophene (C12-BTBT) with the insulator polystyrene, uniform transport layers with vertically phase segregated morphology are obtained, from which the mobility and threshold voltage of OFETs are largely manipulated. The OFETs exhibit field-effect mobilities as high as 7.5 cm2·V-1·s-1 with an on/off ratio exceeding 106 in ambient conditions. This double-layer structure provides an appropriate architecture for applying gate-stress to inject charges into the insulating layer, forming an electret. The generation of the electret is thermally accelerated and thus can be easily realized under moderate gate-stress at elevated temperature (e.g., 60 ℃). After cooling, the electret layer serves as a floating-gate, which not only continuously tunes the threshold voltage and field-effect mobility, but also helps minimize the contact resistances and optimize the subthreshold swing. As an application of this method, a digital inverter is built and its performance is optimized via in situ tuning of its individual transistors.

Electronic Supplementary Material

Download File(s)
12274_2018_2088_MOESM1_ESM.pdf (1 MB)

References

1

Dong, H. L.; Fu, X. L.; Liu, J.; Wang, Z. R.; Hu, W. P. 25th anniversary article: Key points for high-mobility organic field-effect transistors. Adv. Mater. 2013, 25, 6158-6183.

2

Yu, K.; Park, B.; Kim, G.; Kim, C. H.; Park, S.; Kim, J.; Jung, S.; Jeong, S.; Kwon, S.; Kang, H. et al. Optically transparent semiconducting polymer nanonetwork for flexible and transparent electronics. Proc. Natl. Acad. Sci. USA 2016, 113, 14261-14266.

3

Fukuda, K.; Someya, T. Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology. Adv. Mater. 2017, 29, 1602736.

4

Cui, N.; Ren, H.; Tang, Q. X.; Zhao, X. L.; Tong, Y. H.; Hu, W. P.; Liu, Y. C. Fully transparent conformal organic thin-film transistor array and its application as LED front driving. Nanoscale 2018, 10, 3613-3620.

5

Tsao, H. N.; Müllen, K. Improving polymer transistor performance via morphology control. Chem. Soc. Rev. 2010, 39, 2372-2386.

6

Wang, L.; Zhang, X. J.; Dai, G. L.; Deng, W.; Jie, J. S.; Zhang, X. H. High-mobility air-stable n-type field-effect transistors based on large-area solution-processed organic single-crystal arrays. Nano Res. 2018, 11, 882-891.

7

Natali, D.; Caironi, M. Charge injection in solution-processed organic field-effect transistors: Physics, models and characterization methods. Adv. Mater. 2012, 24, 1357-1387.

8

Nikolka, M.; Nasrallah, I.; Rose, B.; Ravva, M. K.; Broch, K.; Sadhanala, A.; Harkin, D.; Charmet, J.; Hurhangee, M.; Brown, A. et al. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat. Mater. 2017, 16, 356-362.

9

Goffri, S.; Müller, C.; Stingelin-Stutzmann, N.; Breiby, D. W.; Radano, C. P.; Andreasen, J. W.; Thompson, R.; Janssen, R. A. J.; Nielsen, M. M.; Smith, P. et al. Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold. Nat. Mater. 2006, 5, 950-956.

10

Yuan, Y. B.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C. B.; Chen, J. H.; Nordlund, D.; Toney, M. F.; Huang, J. S.; Bao, Z. N. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 2014, 5, 3005.

11

Hamilton, R.; Smith, J.; Ogier, S.; Heeney, M.; Anthony, J. E.; McCulloch, I.; Veres, J.; Bradley, D. D. C.; Anthopoulos, T. D. High-performance polymer-small molecule blend organic transistors. Adv. Mater. 2009, 21, 1166-1171.

12

Niazi, M. R.; Li, R. P.; Li, E. Q.; Kirmani, A. R.; Abdelsamie, M.; Wang, Q. X.; Pan, W. Y.; Payne, M. M.; Anthony, J. E.; Smilgies, D. M. et al. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals. Nat. Commun. 2015, 6, 8598.

13

Kang, M. J.; Hwang, H.; Park, W. T.; Khim, D.; Yeo, J. S.; Kim, Y.; Kim, Y. J.; Noh, Y. Y.; Kim, D. Y. Ambipolar small-molecule: Polymer blend semiconductors for solution-processable organic field-effect transistors. ACS Appl. Mater. Interfaces 2017, 9, 2686-2692.

14

Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet printing of single-crystal films. Nature 2011, 475, 364-367.

15

Kang, B.; Ge, F.; Qiu, L. Z.; Cho, K. Effective use of electrically insulating units in organic semiconductor thin films for high-performance organic transistors. Adv. Electron. Mater. 2017, 3, 1600240.

16

Shiwaku, R.; Matsui, H.; Hayasaka, K.; Takeda, Y.; Fukuda, T.; Kumaki, D.; Tokito, S. Printed organic inverter circuits with ultralow operating voltages. Adv. Electron. Mater. 2017, 3, 1600557.

17

Ebata, H.; Izawa, T.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H.; Yui, T. Highly soluble[1]benzothieno[3, 2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J. Am. Chem. Soc. 2007, 129, 15732-15733.

18

Wang, Q. J.; Qian, J.; Li, Y.; Zhang, Y. H.; He, D. W.; Jiang, S.; Wang, Y.; Wang, X. R.; Pan, L. J.; Wang, J. Z. et al. 2D single-crystalline molecular semiconductors with precise layer definition achieved by floating-coffee-ring-driven assembly. Adv. Funct. Mater. 2016, 26, 3191-3198.

19

Tsutsui, Y.; Schweicher, G.; Chattopadhyay, B.; Sakurai, T.; Arlin, J. B.; Ruzié, C.; Aliev, A.; Ciesielski, A.; Colella, S.; Kennedy, A. R. et al. Unraveling unprecedented charge carrier mobility through structure property relationship of four isomers of didodecyl[1]benzothieno[3, 2-b][1]benzothiophene. Adv. Mater. 2016, 28, 7106-7114.

20

Paterson, A. F.; Treat, N. D.; Zhang, W. M.; Fei, Z. P.; Wyatt-Moon, G.; Faber, H.; Vourlias, G.; Patsalas, P. A.; Solomeshch, O.; Tessler, N. et al. Small molecule/polymer blend organic transistors with hole mobility exceeding 13 cm2·V-1·s-1. Adv. Mater. 2016, 28, 7791-7798.

21

Zhang, Y. H.; Luo, Z. Z.; Hu, F. R.; Nan, H. Y.; Wang, X. Y.; Ni, Z. H.; Xu, J. B.; Shi, Y.; Wang, X. R. Realization of vertical and lateral van der Waals heterojunctions using two-dimensional layered organic semiconductors. Nano Res. 2017, 10, 1336-1344.

22

Liu, C.; Li, Y.; Minari, T.; Takimiya, K.; Tsukagoshi, K. Forming semiconductor/dielectric double layers by one-step spin-coating for enhancing the performance of organic field-effect transistors. Org. Electron. 2012, 13, 1146-1151.

23

Soeda, J.; Hirose, Y.; Yamagishi, M.; Nakao, A.; Uemura, T.; Nakayama, K.; Uno, M.; Nakazawa, Y.; Takimiya, K.; Takeya, J. Solution-crystallized organic field-effect transistors with charge-acceptor layers: High-mobility and low-threshold-voltage operation in air. Adv. Mater. 2011, 23, 3309-3314.

24

Lüssem, B.; Tietze, M. L.; Kleemann, H.; Hoβbach, C.; Bartha, J. W.; Zakhidov, A.; Leo, K. Doped organic transistors operating in the inversion and depletion regime. Nat. Commun. 2013, 4, 2775.

25

Lüssem, B.; Keum, C. M.; Kasemann, D.; Naab, B.; Bao, Z.; Leo, K. Doped organic transistors. Chem. Rev. 2016, 116, 13714-13751.

26

Lee, B. H.; Bazan, G. C.; Heeger, A. J. Doping-induced carrier density modulation in polymer field-effect transistors. Adv. Mater. 2016, 28, 57-62.

27

Zhang, F. J.; Dai, X. J.; Zhu, W. K.; Chung, H.; Diao, Y. Large modulation of charge carrier mobility in doped nanoporous organic transistors. Adv. Mater. 2017, 29, 1700411.

28

Aghamohammadi, M.; Rödel, R.; Zschieschang, U.; Ocal, C.; Boschker, H.; Weitz, R. T.; Barrena, E.; Klauk, H. Threshold-voltage shifts in organic transistors due to self-assembled monolayers at the dielectric: Evidence for electronic coupling and dipolar effects. ACS Appl. Mater. Interfaces 2015, 7, 22775-22785.

29

Kobayashi, S.; Nishikawa, T.; Takenobu, T.; Mori, S.; Shimoda, T.; Mitani, T.; Shimotani, H.; Yoshimoto, N.; Ogawa, S.; Iwasa, Y. Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nat. Mater. 2004, 3, 317-322.

30

Yokota, T.; Kajitani, T.; Shidachi, R.; Tokuhara, T.; Kaltenbrunner, M.; Shoji, Y.; Ishiwari, F.; Sekitani, T.; Fukushima, T.; Someya, T. A few-layer molecular film on polymer substrates to enhance the performance of organic devices. Nat. Nanotechnol. 2018, 13, 139-144.

31

Possanner, S. K.; Zojer, K.; Pacher, P.; Zojer, E.; Schürrer, F. Threshold voltage shifts in organic thin-film transistors due to self-assembled monolayers at the dielectric surface. Adv. Funct. Mater. 2009, 19, 958-967.

32

Choi, H. H.; Kang, M. S.; Kim, M.; Kim, H.; Cho, J. H.; Cho, K. Decoupling the bias-stress-induced charge trapping in semiconductors and gate-dielectrics of organic transistors using a double stretched-exponential formula. Adv. Funct. Mater. 2013, 23, 690-696.

33

Salinas, M.; Jäger, C. M.; Amin, A. Y.; Dral, P. O.; Meyer-Friedrichsen, T.; Hirsch, A.; Clark, T.; Halik, M. The relationship between threshold voltage and dipolar character of self-assembled monolayers in organic thin-film transistors. J. Am. Chem. Soc. 2012, 134, 12648-12652.

34

Roh, J.; Lee, T.; Kang, C. M.; Kwak, J.; Lang, P.; Horowitz, G.; Kim, H.; Lee, C. Injection-modulated polarity conversion by charge carrier density control via a self-assembled monolayer for all-solution-processed organic field-effect transistors. Sci. Rep. 2017, 7, 46365.

35

Katz, H. E.; Hong, X. M.; Dodabalapur, A.; Sarpeshkar, R. Organic field-effect transistors with polarizable gate insulators. J. Appl. Phys. 2002, 91, 1572-1576.

36

Lu, G. H.; Koch, N.; Neher, D. In-situ tuning threshold voltage of field-effect transistors based on blends of poly(3-hexylthiophene) with an insulator electret. Appl. Phys. Lett. 2015, 107, 063301.

37

Bu, L. J.; Qiu, Y. M.; Wei, P.; Zhou, L.; Lu, W. L.; Li, S. T.; Lu, G. H. Manipulating transistor operation via nonuniformly distributed charges in a polymer insulating electret layer. Phys. Rev. Appl. 2016, 6, 054022.

38

Choi, H. H.; Lee, W. H.; Cho, K. Bias-stress-induced charge trapping at polymer chain ends of polymer gate-dielectrics in organic transistors. Adv. Funct. Mater. 2012, 22, 4833-4839.

39

She, X. J.; Liu, J.; Zhang, J. Y.; Gao, X.; Wang, S. D. Spatial profile of charge storage in organic field-effect transistor nonvolatile memory using polymer electret. Appl. Phys. Lett. 2013, 103, 143302.

40

Martínez Hardigree, J. F.; Katz, H. E. Through thick and thin: Tuning the threshold voltage in organic field-effect transistors. Acc. Chem. Res. 2014, 47, 1369-1377.

41

Wang, W.; Kim, K. L.; Cho, S. M.; Lee, J. H.; Park, C. Nonvolatile transistor memory with self-assembled semicon-ducting polymer nanodomain floating gates. ACS Appl. Mater. Interfaces 2016, 8, 33863-33873.

42

Bu, L. J.; Hu, M. X.; Lu, W. L.; Wang, Z. Y.; Lu, G. H. Printing semiconductor-insulator polymer bilayers for high-performance coplanar field-effect transistors. Adv. Mater. 2018, 30, 1704695.

43

Zhao, K.; Wodo, O.; Ren, D. D.; Khan, H. U.; Niazi, M. R.; Hu, H. L.; Abdelsamie, M.; Li, R. P.; Li, E. Q.; Yu, L. Y. et al. Vertical phase separation in small molecule: Polymer blend organic thin film transistors can be dynamically controlled. Adv. Funct. Mater. 2016, 26, 1737-1746.

44

Bu, L. J.; Gao, S.; Wang, W. C.; Zhou, L.; Feng, S.; Chen, X.; Yu, D. M.; Li, S. T.; Lu, G. H. Film-depth-dependent light absorption and charge transport for polymer electronics: A case study on semiconductor/insulator blends by plasma etching. Adv. Electron. Mater. 2016, 2, 1600359.

45

Makita, T.; Sasaki, M.; Annaka, T.; Sasaki, M.; Matsui, H.; Mitsui, C.; Kumagai, S.; Watanabe, S.; Hayakawa, T.; Okamoto, T. et al. Spontaneously formed high-performance charge-transport layers of organic single-crystal semiconductors on precisely synthesized insulating polymers. Appl. Phys. Lett. 2017, 110, 163302.

46

Kwak, D.; Choi, H. H.; Kang, B.; Kim, D. H.; Lee, W. H.; Cho, K. Tailoring morphology and structure of inkjet-printed liquid-crystalline semiconductor/insulating polymer blends for high-stability organic transistors. Adv. Funct. Mater. 2016, 26, 3003-3011.

47

Bittle, E. G.; Basham, J. I.; Jackson, T. N.; Jurchescu, O. D.; Gundlach, D. J. Mobility overestimation due to gated contacts in organic field-effect transistors. Nat. Commun. 2016, 7, 10908.

48

Uemura, T.; Rolin, C.; Ke, T. H.; Fesenko, P.; Genoe, J.; Heremans, P.; Takeya, J. On the extraction of charge carrier mobility in high-mobility organic transistors. Adv. Mater. 2016, 28, 151-155.

49

Liu, C.; Li, G. T.; Di Pietro, R.; Huang, J.; Noh, Y. Y.; Liu, X. Y.; Minari, T. Device physics of contact issues for the overestimation and underestimation of carrier mobility in field-effect transistors. Phys. Rev. Appl. 2017, 8, 034020.

50

Bobbert, P. A.; Sharma, A.; Mathijssen, S. G.; Kemerink, M.; de Leeuw, D. M. Operational stability of organic field-effect transistors. Adv. Mater. 2012, 24, 1146-1158.

51

Phan, H.; Wang, M.; Bazan, G. C.; Nguyen, T. Q. Electrical instability induced by electron trapping in low-bandgap donor-acceptor polymer field-effect transistors. Adv. Mater. 2015, 27, 7004-7009.

52

Richards, T.; Sirringhaus, H. Bias-stress induced contact and channel degradation in staggered and coplanar organic field-effect transistors. Appl. Phys. Lett. 2008, 92, 023512.

53

Lee, W. H.; Choi, H. H.; Kim, D. H.; Cho, K. 25th anniversary article: Microstructure dependent bias stability of organic transistors. Adv. Mater. 2014, 26, 1660-80.

54

Torricelli, F.; Colalongo, L.; Raiteri, D.; Kovács-Vajna, Z. M.; Cantatore, E. Ultra-high gain diffusion-driven organic transistor. Nat. Commun. 2016, 7, 10550.

55

Uemura, T.; Matsumoto, T.; Miyake, K.; Uno, M.; Ohnishi, S.; Kato, T.; Katayama, M.; Shinamura, S.; Hamada, M.; Kang, M. J. et al. Split-gate organic field-effect transistors for high-speed operation. Adv. Mater. 2014, 26, 2983-2988.

56

Kalb, W. L.; Batlogg, B. Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods. Phys. Rev. B 2010, 81, 035327.

57

Choi, H. H.; Cho, K.; Frisbie, C. D.; Sirringhaus, H.; Podzorov, V. Critical assessment of charge mobility extraction in FETs. Nat. Mater. 2018, 17, 2-7.

58

Kergoat, L.; Herlogsson, L.; Piro, B.; Pham, M. C.; Horowitz, G.; Crispin, X.; Berggren, M. Tuning the threshold voltage in electrolyte-gated organic field-effect transistors. Proc. Natl. Acad. Sci. USA 2012, 109, 8394-8399.

59

Minari, T.; Kano, M.; Miyadera, T.; Wang, S. D.; Aoyagi, Y.; Tsukagoshi, K. Surface selective deposition of molecular semiconductors for solution-based integration of organic field-effect transistors. Appl. Phys. Lett. 2009, 94, 093307.

Nano Research
Pages 5835-5848
Cite this article:
Wei P, Li S, Li D, et al. Organic-semiconductor: Polymer-electret blends for high-performance transistors. Nano Research, 2018, 11(11): 5835-5848. https://doi.org/10.1007/s12274-018-2088-7

681

Views

20

Crossref

N/A

Web of Science

23

Scopus

5

CSCD

Altmetrics

Received: 12 February 2018
Revised: 26 April 2018
Accepted: 07 May 2018
Published: 25 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return