AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-situ fabrication of Mo6S6-nanowire-terminated edges in monolayer molybdenum disulfide

Wei HuangXiaowei WangXujing JiZe ZhangChuanhong Jin( )
State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
Show Author Information

Graphical Abstract

Abstract

Edge structures are highly relevant to the electronic, magnetic, and catalytic properties of two-dimensional (2D) transition metal dichalcogenides (TMDs) and their one-dimensional (1D) counterparts, i.e., nanoribbons, and should be precisely tailored for the desired application. In this work, we report the formation of novel Mo6S6 nanowire (NW)-terminated edges in monolayer molybdenum disulfide (MoS2) via an e–beam irradiation process combined with high temperature heating. The atomic structures of the NW-terminated edges and the dynamic formation process were observed experimentally using scanning transmission electron microscopy. Further analysis showed that the NW-terminated edge could be formed on both the Mo-zigzag (ZZ) edge and S-ZZ edge and could exhibit a stability superior to that of the pristine ZZ and armchair (AC) edges. In addition, analogous edge structures could also be formed in MoS2 nanoribbons and other TMD materials such as MoxW1-xSe2. We believe that these novel edge structures may impart novel properties to the 2D and 1D TMD materials and provide new opportunities for their applications in catalytic, spintronic, and electronic devices.

Electronic Supplementary Material

Video
12274_2018_2089_MOESM1_ESM.avi
Download File(s)
12274_2018_2089_MOESM2_ESM.pdf (1.5 MB)

References

1

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

2

Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74-80.

3

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

4

Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222-6227.

5

Furimsky, E. Role of MoS2 and WS2 in hydrodesulfurization. Catal. Rev. 1980, 22, 371-400.

6

Jiang, L. F.; Lin, B. H.; Li, X. M.; Song, X. F.; Xia, H.; Li, L.; Zeng, H. B. Monolayer MoS2-graphene hybrid aerogels with controllable porosity for lithium-ion batteries with high reversible capacity. ACS Appl. Mater. Interfaces 2016, 8, 2680-2687.

7

Liu, Y. P.; He, X. Y.; Hanlon, D.; Harvey, A.; Coleman, J. N.; Li, Y. G. Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano 2016, 10, 8821-8828.

8

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

9

Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966-971.

10

Gong, Y. J.; Lin, Z.; Ye, G. L.; Shi, G.; Feng, S. M.; Lei, Y.; Elías, A. L.; Perea-Lopez, N.; Vajtai, R.; Terrones, H. et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano 2015, 9, 11658-11666.

11

Hong, J. H.; Hu, Z. X.; Probert, M.; Li, K.; Lv, D. H.; Yang, X. N.; Gu, L.; Mao, N. N.; Feng, Q. L.; Xie, L. M. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293.

12

Zhang, X. Q.; Lin, C. H.; Tseng, Y. W.; Huang, K. H.; Lee, Y. H. Synthesis of lateral heterostructures of semiconducting atomic layers. Nano Lett. 2015, 15, 410-415.

13

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135-1142.

14

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.

15

Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738-5745.

16

Wang, L. F.; Xu, Z.; Wang, W. L.; Bai, X. D. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 2014, 136, 6693-6697.

17

Liu, G. L.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 2017, 9, 810-816.

18

Tsai, C.; Chan, K. R.; Nørskov, J. K.; Abild-Pedersen, F. Rational design of MoS2 catalysts: Tuning the structure and activity via transition metal doping. Catal. Sci. Technol. 2015, 5, 246-253.

19

Cheng, Y. C.; Zhu, Z. Y.; Mi, W. B.; Guo, Z. B.; Schwingenschlögl, U. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems. Phys. Rev. B 2013, 87, 100401.

20

Knirsch, K. C.; Berner, N. C.; Nerl, H. C.; Cucinotta, C. S.; Gholamvand, Z.; McEvoy, N.; Wang, Z. X.; Abramovic, I.; Vecera, P.; Halik, M. et al. Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts. ACS Nano 2015, 9, 6018-6030.

21

Abbasi, P.; Asadi, M.; Liu, C.; Sharifi-Asl, S.; Sayahpour, B.; Behranginia, A.; Zapol, P.; Shahbazian-Yassar, R.; Curtiss, L. A.; Salehi-Khojin, A. Tailoring the edge structure of molybdenum disulfide toward electrocatalytic reduction of carbon dioxide. ACS Nano 2017, 11, 453-460.

22

Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963-969.

23

Hansen, L. P.; Ramasse, Q. M.; Kisielowski, C.; Brorson, M.; Johnson, E.; Topsøe, H.; Helveg, S. Atomic-scale edge structures on industrial-style MoS2 nanocatalysts. Angew. Chem., Int. Ed. 2011, 50, 10153-10156.

24

Helveg, S.; Lauritsen, J. V.; Laegsgaard, E.; Stensgaard, I.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H.; Besenbacher, F. Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett. 2000, 84, 951-954.

25

Furimsky, E.; Amberg, C. H. The role of cobalt in unsupported MoS2 hydrodesulfurization catalysts. Can. J. Chem. 1975, 53, 2542-2547.

26

Chadwick, D.; Breysse, M. The nature of hydrodesulfurization on MoS2. J. Catal. 1981, 71, 226-227.

27

Daage, M.; Chianelli, R. R. Structure-function relations in molybdenum sulfide catalysts: The "rim-edge" model. J. Catal. 1994, 149, 414-427.

28

Raybaud, P.; Hafner, J.; Kresse, G.; Kasztelan, S.; Toulhoat, H. Ab initio study of the H2-H2S/MoS2 gas-solid interface: The nature of the catalytically active sites. J. Catal. 2000, 189, 129-146.

29

Nørskov, J. K.; Clausen, B. S.; Topsøe, H. Understanding the trends in the hydrodesulfurization activity of the transition metal sulfides. Catal. Lett. 1992, 13, 1-8.

30

Tongay, S.; Varnoosfaderani, S. S.; Appleton, B. R.; Wu, J. Q.; Hebard, A. F. Magnetic properties of MoS2: Existence of ferromagnetism. Appl. Phys. Lett. 2012, 101, 123105.

31

Cui, P.; Choi, J. H.; Chen, W.; Zeng, J.; Shih, C. K.; Li, Z. Y.; Zhang, Z. Y. Contrasting structural reconstructions, electronic properties, and magnetic orderings along different edges of zigzag transition metal dichalcogenide nanoribbons. Nano Lett. 2017, 17, 1097-1101.

32

Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 2008, 130, 16739-16744.

33

Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615-2622.

34

Zhao, X. X.; Fu, D. Y.; Ding, Z. J.; Zhang, Y. Y.; Wan, D. Y.; Tan, S. J. R.; Chen, Z. X.; Leng, K.; Dan, J. D.; Fu, W. et al. Mo-terminated edge reconstructions in nanoporous molybdenum disulfide film. Nano Lett. 2018, 18, 482-490.

35

Lauritsen, J. V.; Kibsgaard, J.; Helveg, S.; Topsøe, H.; Clausen, B. S.; Laegsgaard, E.; Besenbacher, F. Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2007, 2, 53-58.

36

Chen, Q.; Li, H. S.; Xu, W. S.; Wang, S. S.; Sawada, H.; Allen, C. S.; Kirkland, A. I.; Grossman, J. C.; Warner, J. H. Atomically flat zigzag edges in monolayer MoS2 by thermal annealing. Nano Lett. 2017, 17, 5502-5507.

37

Shen, Y. T.; Sun, L. T. Setting up a nanolab inside a transmission electron microscope for two-dimensional materials research. J. Mater. Res. 2015, 30, 3153-3176.

38

Zhao, X. X.; Kotakoski, J.; Meyer, J. C.; Sutter, E.; Sutter, P.; Krasheninnikov, A. V.; Kaiser, U.; Zhou, W. Engineering and modifying two-dimensional materials by electron beams. MRS Bull. 2017, 42, 667-676.

39

Lin, J. H.; Pantelides, S. T.; Zhou, W. Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer. ACS Nano 2015, 9, 5189-5197.

40

Komsa, H. P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 2012, 109, 035503.

41

Lin, J. H.; Cretu, O.; Zhou, W.; Suenaga, K.; Prasai, D.; Bolotin, K. I.; Cuong, N. T.; Otani, M.; Okada, S.; Lupini, A. R. et al. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nat. Nanotechnol. 2014, 9, 436-442.

42

Liu, X. F.; Xu, T.; Wu, X.; Zhang, Z. H.; Yu, J.; Qiu, H.; Hong, J. H.; Jin, C. H.; Li, J. X.; Wang, X. R. et al. Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 2013, 4, 1776.

43

Lehtinen, O.; Komsa, H. P.; Pulkin, A.; Whitwick, M. B.; Chen, M. W.; Lehnert, T.; Mohn, M. J.; Yazyev, O. V.; Kis, A.; Kaiser, U. et al. Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe2. ACS Nano 2015, 9, 3274-3283.

44

Lin, J. H.; Zhang, Y. Y.; Zhou, W.; Pantelides, S. T. Structural flexibility and alloying in ultrathin transition-metal chalcogenide nanowires. ACS Nano 2016, 10, 2782-2790.

45

Koh, A. L.; Wang, S. S.; Ataca, C.; Grossman, J. C.; Sinclair, R.; Warner, J. H. Torsional deformations in subnanometer MoS interconnecting wires. Nano Lett. 2016, 16, 1210-1217.

46

Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754-759.

47

Koch, C. T. Determination of core structure periodicity and point defect density along dislocations. Ph. D. Dissertation, Arizona State University, USA, 2002.

48

Kibsgaard, J.; Tuxen, A.; Levisen, M.; Laegsgaard, E.; Gemming, S.; Seifert, G.; Lauritsen, J. V.; Besenbacher, F. Atomic-scale structure of Mo6S6 nanowires. Nano Lett. 2008, 8, 3928-3931.

49

Venkataraman, L.; Lieber, C. M. Molybdenum selenide molecular wires as one-dimensional conductors. Phys. Rev. Lett. 1999, 83, 5334-5337.

50

Hong, J. H.; Pan, Y. H.; Hu, Z. X.; Lv, D. H.; Jin, C. H.; Ji, W.; Yuan, J.; Zhang, Z. Direct imaging of kinetic pathways of atomic diffusion in monolayer molybdenum disulfide. Nano Lett. 2017, 17, 3383-3390.

51

Yagmurcukardes, M.; Peeters, F. M.; Senger, R. T.; Sahin, H. Nanoribbons: From fundamentals to state-of-the-art applications. Appl. Phys. Rev. 2016, 3, 041302.

52

Barja, S.; Wickenburg, S.; Liu, Z. F.; Zhang, Y.; Ryu, H. J.; Ugeda, M. M.; Hussain, Z.; Shen, Z. X.; Mo, S. K.; Wong, E. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 2016, 12, 751-756.

53

Liu, H. J.; Jiao, L.; Yang, F.; Cai, Y.; Wu, X. X.; Ho, W. K.; Gao, C. L.; Jia, J. F.; Wang, N.; Fan, H. et al. Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations. Phys. Rev. Lett. 2014, 113, 066105.

Nano Research
Pages 5849-5857
Cite this article:
Huang W, Wang X, Ji X, et al. In-situ fabrication of Mo6S6-nanowire-terminated edges in monolayer molybdenum disulfide. Nano Research, 2018, 11(11): 5849-5857. https://doi.org/10.1007/s12274-018-2089-6

714

Views

38

Crossref

N/A

Web of Science

35

Scopus

3

CSCD

Altmetrics

Received: 02 March 2018
Revised: 29 April 2018
Accepted: 07 May 2018
Published: 29 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return