Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Reactive oxygen and nitrogen species (RONS) are essential for normal physiological processes and play important roles in cell signaling, immunity, and tissue homeostasis. However, excess radical species are implicated in the development and augmented pathogenesis of various diseases. Several antioxidants may restore the chemical balance, but their use is limited by disappointing results of clinical trials. Nanoparticles are an attractive therapeutic alternative because they can change the biodistribution profile of antioxidants, and possess intrinsic ability to scavenge RONS. Herein, we review the types of RONS, how they are implicated in several diseases, and the types of nanoparticles with inherent antioxidant capability, their mechanisms of action, and their biological applications.
Commoner, B.; Townsend, J.; Pake, G. E. Free radicals in biological materials. Nature 1954, 174, 689–691.
Alfadda, A. A.; Sallam, R. M. Reactive oxygen species in health and disease. J. Biomed. Biotechnol. 2012, 2012, 936486.
Bayir, H. Reactive oxygen species. Crit. Care Med. 2005, 33, S498–S501.
McCord, J. M.; Fridovich, I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055.
Rhee, S. G.; Woo, H. A.; Kil, I. S.; Bae, S. H. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 2012, 287, 4403–4410.
Ray, P. D.; Huang, B. W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012, 24, 981–990.
Olmez, I.; Ozyurt, H. Reactive oxygen species and ischemic cerebrovascular disease. Neurochem. Int. 2012, 60, 208–212.
Galley, H. F. Oxidative stress and mitochondrial dysfunction in sepsis. Br. J. Anaesth. 2011, 107, 57–64.
Urakawa, H.; Katsuki, A.; Sumida, Y.; Gabazza, E. C.; Murashima, S.; Morioka, K.; Maruyama, N.; Kitagawa, N.; Tanaka, T.; Hori, Y. et al. Oxidative stress is associated with adiposity and insulin resistance in men. J. Clin. Endocrinol. Metab. 2003, 88, 4673–4676.
Datla, S. R.; Griendling, K. K. Reactive oxygen species, NADPH oxidases, and hypertension. Hypertension 2010, 56, 325–330.
Kim, G. H.; Kim, J. E.; Rhie, S. J.; Yoon, S. The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol. 2015, 24, 325–340.
Salminen, A.; Ojala, J.; Kaarniranta, K.; Kauppinen, A. Mitochondrial dysfunction and oxidative stress activate inflammasomes: Impact on the aging process and age–related diseases. Cell. Mol. Life Sci. 2012, 69, 2999–3013.
Liou, G. Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44, 479–496.
Hahn, S. M.; Lepinski, D. L.; DeLuca, A. M.; Mitchell, J. B.; Pellmar, T. C. Neurophysiological consequences of nitroxide antioxidants. Can. J. Physiol. Pharmacol. 1995, 73, 399–403.
Samuni, A.; Krishna, C. M.; Riesz, P.; Finkelstein, E.; Russo, A. A novel metal–free low molecular weight superoxide dismutase mimic. J. Biol. Chem. 1988, 263, 17921–17924.
Firuzi, O.; Miri, R.; Tavakkoli, M.; Saso, L. Antioxidant therapy: Current status and future prospects. Curr. Med. Chem. 2011, 18, 3871–3888.
Iannitti, T.; Palmieri, B. Antioxidant therapy effectiveness: An up to date. Eur. Rev. Med. Pharmacol. Sci. 2009, 13, 245–278.
Bjelakovic, G.; Nikolova, D.; Simonetti, R. G.; Gluud, C. Antioxidant supplements for preventing gastrointestinal cancers. Cochrane Database Syst. Rev. 2008, DOI: 10.1002/14651858.CD004183.pub3.
Lirussi, F.; Azzalini, L.; Orando, S.; Orlando, R.; Angelico, F. Antioxidant supplements for non–alcoholic fatty liver disease and/or steatohepatitis. Cochrane Database Syst. Rev. 2007, DOI: 10.1002/14651858.CD004996.pub3.
Orrell, R. W.; Lane, R. J.; Ross, M. A systematic review of antioxidant treatment for amyotrophic lateral sclerosis/motor neuron disease. Amyotroph. Lateral Scler. 2008, 9, 195–211.
Farinotti, M.; Vacchi, L.; Simi, S.; Di Pietrantonj, C.; Brait, L.; Filippini, G. Dietary interventions for multiple sclerosis. Cochrane Database Syst. Rev. 2012, DOI: 10.1002/14651858.CD004192.pub3.
Shaheen, S. O.; Newson, R. B.; Rayman, M. P.; Wong, A. P. L.; Tumilty, M. K.; Phillips, J. M.; Potts, J. F.; Kelly, F. J.; White, P. T.; Burney, P. G. J. Randomised, double blind, placebo–controlled trial of selenium supplementation in adult asthma. Thorax 2007, 62, 483–490.
Cochemé, H. M.; Murphy, M. P. Can antioxidants be effective therapeutics? Curr. Opin. Invest. Drugs 2010, 11, 426–431.
Marchioli, R.; Schweiger, C.; Levantesi, G.; Tavazzi, L.; Valagussa, F. Antioxidant vitamins and prevention of cardiovascular disease: Epidemiological and clinical trial data. Lipids 2001, 36, S53–S63.
Chonpathompikunlert, P.; Fan, C. H.; Ozaki, Y.; Yoshitomi, T.; Yeh, C. K.; Nagasaki, Y. Redox nanoparticle treatment protects against neurological deficit in focused ultrasoundinduced intracerebral hemorrhage. Nanomedicine 2012, 7, 1029–1043.
Nash, K. M.; Ahmed, S. Nanomedicine in the ROS–mediated pathophysiology: Applications and clinical advances. Nanomedicine 2015, 11, 2033–2040.
Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13.
Fridovich, I. Superoxide dismutases. An adaptation to a paramagnetic gas. J. Biol. Chem. 1989, 264, 7761–7764.
Fukuzawa, K.; Gebicki, J. M. Oxidation of α–tocopherol in micelles and liposomes by the hydroxyl, perhydroxyl, and superoxide free radicals. Arch. Biochem. Biophys. 1983, 226, 242–251.
Sheng, Y. W.; Abreu, I. A.; Cabelli, D. E.; Maroney, M. J.; Miller, A. F.; Teixeira, M.; Valentine, J. S. Superoxide dismutases and superoxide reductases. Chem. Rev. 2014, 114, 3854–3918.
Winterbourn, C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008, 4, 278–286.
Rhee, S. G.; Yang, K. S.; Kang, S. W.; Woo, H. A.; Chang, T. S. Controlled elimination of intracellular H2O2: Regulation of peroxiredoxin, catalase, and glutathione peroxidase via post–translational modification. Antioxid. Redox Signal. 2005, 7, 619–626.
Pastor, N.; Weinstein, H.; Jamison, E.; Brenowitz, M. A detailed interpretation of OH radical footprints in a TBP–DNA complex reveals the role of dynamics in the mechanism of sequence–specific binding. J. Mol. Biol. 2000, 304, 55–68.
Halliwell, B. Oxidants and human–disease: Some new concepts. FASEB J. 1987, 1, 358–364.
Kehrer, J. P. The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 2000, 149, 43–50.
Buonocore, G.; Perrone, S.; Tataranno, M. L. Oxygen toxicity: Chemistry and biology of reactive oxygen species. Semin. Fetal Neonatal Med. 2010, 15, 186–190.
Nathan, C.; Xie, Q. W. Regulation of biosynthesis of nitric oxide. J. Biol. Chem. 1994, 269, 13725–13728.
Martínez, M. C.; Andriantsitohaina, R. Reactive nitrogen species: Molecular mechanisms and potential significance in health and disease. Antioxid. Redox Signal. 2009, 11, 669–702.
Patel, R. P.; McAndrew, J.; Sellak, H.; White, C. R.; Jo, H.; Freeman, B. A.; Darley–Usmar, V. M. Biological aspects of reactive nitrogen species. Biochim. Biophys. Acta 1999, 1411, 385–400.
De Grey, A. D. J. HO2·: The forgotten radical. DNA Cell Biol. 2002, 21, 251–257.
Pullar, J. M.; Vissers, M. C. M.; Winterbourn, C. C. Living with a killer: The effects of hypochlorous acid on mammalian cells. IUBMB Life 2000, 50, 259–266.
Lee, J.; Koo, N.; Min, D. B. Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr. Rev. Food Sci. F. 2004, 3, 21–33.
Bartosz, G. Reactive oxygen species: Destroyers or messengers? Biochem. Pharmacol. 2009, 77, 1303–1315.
Sharma, P.; Jha, A. B.; Dubey, R. S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, Article ID 217037.
Birben, E.; Sahiner, U. M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19.
Dizdaroglu, M.; Jaruga, P.; Birincioglu, M.; Rodriguez, H. Free radical–induced damage to DNA: Mechanisms and measurement. Free Radic. Biol. Med. 2002, 32, 1102–1115.
Phaniendra, A.; Jestadi, D. B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11–26.
Dean, R. T.; Fu, S.; Stocker, R.; Davies, M. J. Biochemistry and pathology of radical–mediated protein oxidation. Biochem. J. 1997, 324, 1–18.
Butterfield, D. A.; Koppal, T.; Howard, B.; Subramaniam, R.; Hall, N.; Hensley, K.; Yatin, S.; Allen, K.; Aksenov, M.; Aksenova, M. et al. Structural and functional changes in proteins induced by free radical–mediated oxidative stress and protective action of the antioxidants N–tert–butyl–α–phenylnitrone and vitamin Ea. Ann. N Y Acad. Sci. 1998, 854, 448–462.
Chevion, M.; Berenshtein, E.; Stadtman, E. R. Human studies related to protein oxidation: Protein carbonyl content as a marker of damage. Free Radical Res. 2000, 33, S99–S108.
Shimizu, M.; Yoshitomi, T.; Nagasaki, Y. The behavior of ROS–scavenging nanoparticles in blood. J. Clin. Biochem. Nutr. 2014, 54, 166–173.
Yoshitomi, T.; Hirayama, A.; Nagasaki, Y. The ROS scavenging and renal protective effects of pH–responsive nitroxide radical–containing nanoparticles. Biomaterials 2011, 32, 8021–8028.
Nagasaki, Y. Nitroxide radicals and nanoparticles: A partnership for nanomedicine radical delivery. Ther. Deliv. 2012, 3, 165–179.
Vong, L. B.; Kobayashi, M.; Nagasaki, Y. Evaluation of the toxicity and antioxidant activity of redox nanoparticles in zebrafish (Danio rerio) embryos. Mol. Pharm. 2016, 13, 3091–3097.
Yue, C. X.; Yang, Y. M.; Zhang, C. L.; Alfranca, G.; Cheng, S. L.; Ma, L. J.; Liu, Y. L.; Zhi, X.; Ni, J.; Jiang, W. H. et al. ROS–responsive mitochondria–targeting blended nanoparticles: Chemo–and photodynamic synergistic therapy for lung cancer with on–demand drug release upon irradiation with a single light source. Theranostics 2016, 6, 2352–2366.
Yoshitomi, T.; Nagasaki, Y. Nitroxyl radical–containing nanoparticles for novel nanomedicine against oxidative stress injury. Nanomedicine 2011, 6, 509–518.
Vong, L. B.; Tomita, T.; Yoshitomi, T.; Matsui, H.; Nagasaki, Y. An orally administered redox nanoparticle that accumulates in the colonic mucosa and reduces colitis in mice. Gastroenterology 2012, 143, 1027–1036.
Marushima, A.; Suzuki, K.; Nagasaki, Y.; Yoshitomi, T.; Toh, K.; Tsurushima, H.; Hirayama, A.; Matsumura, A. Newly synthesized radical–containing nanoparticles enhance neuroprotection after cerebral ischemia–reperfusion injury. Neurosurgery 2011, 68, 1418–1426.
Kalmodia, S.; Vandhana, S.; Tejaswini Rama, B. R.; Jayashree, B.; Sreenivasan Seethalakshmi, T.; Umashankar, V.; Yang, W. R.; Barrow, C. J.; Krishnakumar, S.; Elchuri, S. V. Bioconjugation of antioxidant peptide on surface–modified gold nanoparticles: A novel approach to enhance the radical scavenging property in cancer cell. Cancer Nanotechnol. 2016, 7, 1.
Li, J. C.; Zhang, J.; Chen, Y.; Kawazoe, N.; Chen, G. P. TEMPO–conjugated gold nanoparticles for reactive oxygen species scavenging and regulation of stem cell differentiation. ACS Appl. Mater. Interfaces 2017, 9, 35683–35692.
Pu, H. L.; Chiang, W. L.; Maiti, B.; Liao, Z. X.; Ho, Y. C.; Shim, M. S.; Chuang, E. Y.; Xia, Y. N.; Sung, H. W. Nanoparticles with dual responses to oxidative stress and reduced pH for drug release and anti–inflammatory applications. ACS Nano 2014, 8, 1213–1221.
Celardo, I.; Pedersen, J. Z.; Traversa, E.; Ghibelli, L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011, 3, 1411–1420.
Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 1056–1058.
Singh, S.; Dosani, T.; Karakoti, A. S.; Kumar, A.; Seal, S.; Self, W. T. A phosphate–dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 2011, 32, 6745–6753.
Lee, S. S.; Song, W. S.; Cho, M.; Puppala, H. L.; Nguyen, P.; Zhu, H. G.; Segatori, L.; Colvin, V. L. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 2013, 7, 9693–9703.
Pirmohamed, T.; Dowding, J. M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A. S.; King, J. E. S.; Seal, S.; Self, W. T. Nanoceria exhibit redox state–dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738.
Migani, A.; Vayssilov, G. N.; Bromley, S. T.; Illas, F.; Neyman, K. M. Dramatic reduction of the oxygen vacancy formation energy in ceria particles: A possible key to their remarkable reactivity at the nanoscale. J. Mater. Chem. 2010, 20, 10535–10546.
Das, M.; Patil, S.; Bhargava, N.; Kang, J. F.; Riedel, L. M.; Seal, S.; Hickman, J. J. Auto–catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 2007, 28, 1918–1925.
Perez, J. M.; Asati, A.; Nath, S.; Kaittanis, C. Synthesis of biocompatible dextran–coated nanoceria with pH–dependent antioxidant properties. Small 2008, 4, 552–556.
Niu, J. L.; Azfer, A.; Rogers, L. M.; Wang, X. H.; Kolattukudy, P. E. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc. Res. 2007, 73, 549–559.
Mandoli, C.; Pagliari, F.; Pagliari, S.; Forte, G.; Di Nardo, P.; Licoccia, S.; Traversa, E. Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Adv. Funct. Mater. 2010, 20, 1617–1624.
Hirst, S. M.; Karakoti, A. S.; Tyler, R. D.; Sriranganathan, N.; Seal, S.; Reilly, C. M. Anti–inflammatory properties of cerium oxide nanoparticles. Small 2009, 5, 2848–2856.
Karakoti, A.; Singh, S.; Dowding, J. M.; Seal, S.; Self, W. T. Redox–active radical scavenging nanomaterials. Chem. Soc. Rev. 2010, 39, 4422–4432.
Tsai, Y. Y.; Oca–Cossio, J.; Agering, K.; Simpson, N. E.; Atkinson, M. A.; Wasserfall, C. H.; Constantinidis, I.; Sigmund, W. Novel synthesis of cerium oxide nanoparticles for free radical scavenging. Nanomedicine 2007, 2, 325–332.
Chen, J. P.; Patil, S.; Seal, S.; McGinnis, J. F. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat. Nanotechnol. 2006, 1, 142–150.
Colon, J.; Herrera, L.; Smith, J.; Patil, S.; Komanski, C.; Kupelian, P.; Seal, S.; Jenkins, D. W.; Baker, C. H. Protection from radiation–induced pneumonitis using cerium oxide nanoparticles. Nanomedicine 2009, 5, 225–231.
Kim, C. K.; Kim, T.; Choi, I. Y.; Soh, M.; Kim, D.; Kim, Y. J.; Jang, H.; Yang, H. S.; Kim, J. Y.; Park, H. K. et al. Ceria nanoparticles that can protect against ischemic stroke. Angew. Chem., Int. Ed. 2012, 51, 11039–11043.
Soh, M.; Kang, D. W.; Jeong, H. G.; Kim, D.; Kim, D. Y.; Yang, W.; Song, C.; Baik, S.; Choi, I. Y.; Ki, S. K. et al. Ceria–zirconia nanoparticles as an enhanced multi–antioxidant for sepsis treatment. Angew. Chem., Int. Ed. 2017, 56, 11399–11403.
Kang, D. W.; Kim, C. K.; Jeong, H. G.; Soh, M.; Kim, T.; Choi, I. Y.; Ki, S. K.; Kim, D. Y.; Yang, W.; Hyeon, T. et al. Biocompatible custom ceria nanoparticles against reactive oxygen species resolve acute inflammatory reaction after intracerebral hemorrhage. Nano Res. 2017, 10, 2743–2760.
Wu, H. B.; Li, F. Y.; Wang, S. F.; Lu, J. X.; Li, J. Q.; Du, Y.; Sun, X. L.; Chen, X. Y.; Gao, J. Q.; Ling, D. S. Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS–scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials 2018, 151, 66–77.
Fenoglio, I.; Tomatis, M.; Lison, D.; Muller, J.; Fonseca, A.; Nagy, J. B.; Fubini, B. Reactivity of carbon nanotubes: Free radical generation or scavenging activity? Free Radic. Biol. Med. 2006, 40, 1227–1233.
Krusic, P. J.; Wasserman, E.; Keizer, P. N.; Morton, J. R.; Preston, K. F. Radical reactions of C60. Science 1991, 254, 1183–1185.
Morton, J. R.; Preston, K. F.; Krusic, P. J.; Hill, S. A.; Wasserman, E. ESR studies of the reaction of alkyl radicals with fullerene C60. J. Phys. Chem. 1992, 96, 3576–3578.
Lin, A. M. Y.; Chyi, B. Y.; Wang, S. D.; Yu, H. H.; Kanakamma, P. P.; Luh, T. Y.; Chou, C. K.; Ho, L. T. Carboxyfullerene prevents iron–induced oxidative stress in rat brain. J. Neurochem. 1999, 72, 1634–1640.
Ying, Y. M.; Saini, R. K.; Liang, F.; Sadana, A. K.; Billups, W. E. Functionalization of carbon nanotubes by free radicals. Org. Lett. 2003, 5, 1471–1473.
Galano, A. Carbon nanotubes as free–radical scavengers. J. Phys. Chem. C 2008, 112, 8922–8927.
Lucente–Schultz, R. M.; Moore, V. C.; Leonard, A. D.; Price, B. K.; Kosynkin, D. V.; Lu, M.; Partha, R.; Conyers, J. L.; Tour, J. M. Antioxidant single–walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 3934–3941.
Huq, R.; Samuel, E. L. G.; Sikkema, W. K. A.; Nilewski, L. G.; Lee, T.; Tanner, M. R.; Khan, F. S.; Porter, P. C.; Tajhya, R. B.; Patel, R. S. et al. Preferential uptake of antioxidant carbon nanoparticles by T lymphocytes for immunomodulation. Sci. Rep. 2016, 6, 33808.
Lee, H. J.; Park, J.; Yoon, O. J.; Kim, H. W.; Lee, D. Y.; Kim, D. H.; Lee, W. B.; Lee, N. E.; Bonventre, J. V.; Kim, S. S. Amine–modified single–walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat. Nanotechnol. 2011, 6, 121–125.
Yudoh, K.; Karasawa, R.; Masuko, K.; Kato, T. Watersoluble fullerene (C60) inhibits the development of arthritis in the rat model of arthritis. Int. J. Nanomedicine 2009, 4, 217–225.
Huang, S. T.; Ho, C. S.; Lin, C. M.; Fang, H. W.; Peng, Y. X. Development and biological evaluation of C60 fulleropyrrolidine–thalidomide dyad as a new anti–inflammation agent. Bioorg. Med. Chem. 2008, 16, 8619–8626.
Bitner, B. R.; Marcano, D. C.; Berlin, J. M.; Fabian, R. H.; Cherian, L.; Culver, J. C.; Dickinson, M. E.; Robertson, C. S.; Pautler, R. G.; Kent, T. A. et al. Antioxidant carbon particles improve cerebrovascular dysfunction following traumatic brain injury. ACS Nano 2012, 6, 8007–8014.
Liu, X.; Wang, Q.; Zhao, H. H.; Zhang, L. C.; Su, Y. Y.; Lv, Y. BSA–templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst 2012, 137, 4552–4558.
Li, W.; Liu, Z.; Liu, C. Q.; Guan, Y. J.; Ren, J. S.; Qu, X. G. Manganese dioxide nanozymes as responsive cytoprotective shells for individual living cell encapsulation. Angew. Chem., Int. Ed. 2017, 56, 13661–13665.
Huang, Y. Y.; Liu, Z.; Liu, C. Q.; Ju, E. G.; Zhang, Y.; Ren, J. S.; Qu, X. G. Self–assembly of multi–nanozymes to mimic an intracellular antioxidant defense system. Angew. Chem., Int. Ed. 2016, 55, 6646–6650.
Wan, Y.; Qi, P.; Zhang, D.; Wu, J. J.; Wang, Y. Manganese oxide nanowire–mediated enzyme–linked immunosorbent assay. Biosens. Bioelectron. 2012, 33, 69–74.
Luo, X. L.; Xu, J. J.; Zhao, W.; Chen, H. Y. A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles. Biosens. Biolectron. 2004, 19, 1295–1300.
Prasad, P.; Gordijo, C. R.; Abbasi, A. Z.; Maeda, A.; Ip, A.; Rauth, A. M.; DaCosta, R. S.; Wu, X. Y. Multifunctional albumin–MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 2014, 8, 3202–3212.
Hikosaka, K.; Kim, J.; Kajita, M.; Kanayama, A.; Miyamoto, Y. Platinum nanoparticles have an activity similar to mitochondrial NADH: Ubiquinone oxidoreductase. Colloids Surf. B: Biointerfaces 2008, 66, 195–200.
Tabata, S.; Nishida, H.; Masaki, Y.; Tabata, K. Stoichiometric photocatalytic decomposition of pure water in Pt/TiO2 aqueous suspension system. Catal. Lett. 1995, 34, 245–249.
Watanabe, A.; Kajita, M.; Kim, J.; Kanayama, A.; Takahashi, K.; Mashino, T.; Miyamoto, Y. In vitro free radical scavenging activity of platinum nanoparticles. Nanotechnology 2009, 20, 455105.
Huang, B.; Zhang, J. S.; Hou, J. W.; Chen, C. Free radical scavenging efficiency of Nano–Se in vitro. Free Radic. Biol. Med. 2003, 35, 805–813.
Katsumi, H.; Fukui, K.; Sato, K.; Maruyama, S.; Yamashita, S.; Mizumoto, E.; Kusamori, K.; Oyama, M.; Sano, M.; Sakane, T. et al. Pharmacokinetics and preventive effects of platinum nanoparticles as reactive oxygen species scavengers on hepatic ischemia/reperfusion injury in mice. Metallomics 2014, 6, 1050–1056.
Ju, K. Y.; Lee, Y.; Lee, S.; Park, S. B.; Lee, J. K. Bioinspired polymerization of dopamine to generate melanin–like nanoparticles having an excellent free–radicalscavenging property. Biomacromolecules 2011, 12, 625–632.
Panzella, L.; Gentile, G.; D'Errico, G.; Della Vecchia, N. F.; Errico, M. E.; Napolitano, A.; Carfagna, C.; d'Ischia, M. Atypical structural and π–electron features of a melanin polymer that lead to superior free–radical–scavenging properties. Angew. Chem., Int. Ed. 2013, 52, 12684–12687.
Liu, Y. L.; Ai, K. L.; Ji, X. Y.; Askhatova, D.; Du, R.; Lu, L. H.; Shi, J. J. Comprehensive insights into the multiantioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. J. Am. Chem. Soc. 2017, 139, 856–862.
Tapiero, H.; Townsend, D. M.; Tew, K. D. The antioxidant role of selenium and seleno–compounds. Biomed. Pharmacother. 2003, 57, 134–144.
Qin, S. Y.; Huang, B. X.; Ma, J. F.; Wang, X.; Zhang, J. B.; Li, L. H.; Chen, F. Effects of selenium–chitosan on blood selenium concentration, antioxidation status, and cellular and humoral immunity in mice. Biol. Trace Elem. Res. 2015, 165, 145–152.
Zhai, X. N.; Zhang, C. Y.; Zhao, G. H.; Stoll, S.; Ren, F. Z.; Leng, X. J. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. J. Nanobiotechnology 2017, 15, 4.
Li, F.; Li, T. Y.; Sun, C. X.; Xia, J. H.; Jiao, Y.; Xu, H. P. Selenium–doped carbon quantum dots for free–radical scavenging. Angew. Chem., Int. Ed. 2017, 56, 9910–9914.
Chan, P. H. Role of oxidants in ischemic brain damage. Stroke 1996, 27, 1124–1129.
Alexandrova, M. L.; Bochev, P. G.; Markova, V. I.; Bechev, B. G.; Popova, M. A.; Danovska, M. P.; Simeonova, V. K. Oxidative stress in the chronic phase after stroke. Redox Rep. 2003, 8, 169–176.
Galley, H. F.; Davies, M. J.; Webster, N. R. Xanthine oxidase activity and free radical generation in patients with sepsis syndrome. Crit. Care Med. 1996, 24, 1649–1653.
Takeda, K.; Shimada, Y.; Amano, M.; Sakai, T.; Okada, T.; Yoshiya, I. Plasma lipid peroxides and alpha–tocopherol in critically ill patients. Crit. Care Med. 1984, 12, 957–959.
Borrelli, E.; Roux–Lombard, P.; Grau, G. E.; Girardin, E.; Ricou, B.; Dayer, J. M.; Suter, P. M. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Crit. Care Med. 1996, 24, 392–397.
Victor, V. M.; Espulgues, J. V.; Hernández–Mijares, A.; Rocha, M. Oxidative stress and mitochondrial dysfunction in sepsis: A potential therapy with mitochondria–targeted antioxidants. Infect. Disord. Drug Targets 2009, 9, 376–389.
Levy, R. J.; Vijayasarathy, C.; Raj, N. R.; Avadhani, N. G.; Deutschman, C. S. Competitive and noncompetitive inhibition of myocardial cytochrome C oxidase in sepsis. Shock 2004, 21, 110–114.
Taylor, D. E.; Ghio, A. J.; Piantadosi, C. A. Reactive oxygen species produced by liver mitochondria of rats in sepsis. Arch. Biochem. Biophys. 1995, 316, 70–76.
Brealey, D.; Brand, M.; Hargreaves, I.; Heales, S.; Land, J.; Smolenski, R.; Davies, N. A.; Cooper, C. E.; Singer, M. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 2002, 360, 219–223.
Levy, R. J. Mitochondrial dysfunction, bioenergetic impairment, and metabolic down–regulation in sepsis. Shock 2007, 28, 24–28.
Berger, M. M.; Chioléro, R. L. Antioxidant supplementation in sepsis and systemic inflammatory response syndrome. Crit. Care Med. 2007, 35, S584–S590.
Manoharan, S.; Guillemin, G. J.; Abiramasundari, R. S.; Essa, M. M.; Akbar, M.; Akbar, M. D. The role of reactive oxygen species in the pathogenesis of Alzheimer's disease, Parkinson's disease, and Huntington's disease: A mini review. Oxid. Med. Cell. Longev. 2016, 2016, Article ID 8590578.
Nakajima, K.; Kohsaka, S. Microglia: Activation and their significance in the central nervous system. J. Biochem. 2001, 130, 169–175.
Blesa, J.; Trigo–Damas, I.; Quiroga–Varela, A.; Jackson–Lewis, V. R. Oxidative stress and Parkinson's disease. Front. Neuroanat. 2015, 9, 91.
Gerlach, M.; Double, K. L.; Ben–Shachar, D.; Zecca, L.; Youdim, M. B. H.; Riederer, P. Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson's disease. Neurotox. Res. 2003, 5, 35–43.
Ihara, Y.; Chuda, M.; Kuroda, S.; Hayabara, T. Hydroxyl radical and superoxide dismutase in blood of patients with Parkinson's disease: Relationship to clinical data. J. Neurol. Sci. 1999, 170, 90–95.
Barber, S. C.; Mead, R. J.; Shaw, P. J. Oxidative stress in ALS: A mechanism of neurodegeneration and a therapeutic target. Biochim. Biophys. Acta 2006, 1762, 1051–1067.
Said Ahmed, M.; Hung, W. Y.; Zu, J. S.; Hockberger, P.; Siddique, T. Increased reactive oxygen species in familial amyotrophic lateral sclerosis with mutations in SOD1. J. Neurol. Sci. 2000, 176, 88–94.
Kumar, A.; Ratan, R. R. Oxidative stress and Huntington's disease: The good, the bad, and the ugly. J. Huntingtons Dis. 2016, 5, 217–237.
Gil–Mohapel, J.; Brocardo, P. S.; Christie, B. R. The role of oxidative stress in Huntington's disease: Are antioxidants good therapeutic candidates? Curr. Drug Targets 2014, 15, 454–468.
Kwon, H. J.; Cha, M. Y.; Kim, D.; Kim, D. K.; Soh, M.; Shin, K.; Hyeon, T.; Mook–Jung, I. Mitochondria–targeting ceria nanoparticles as antioxidants for Alzheimer's disease. ACS Nano 2016, 10, 2860–2870.
Blair, M. Diabetes mellitus review. Urol. Nurs. 2016, 36, 27–36.
Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95.
Wolff, S. P.; Jiang, Z. Y.; Hunt, J. V. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic. Biol. Med. 1991, 10, 339–352.
Nishikawa, T.; Edelstein, D.; Du, X. L.; Yamagishi, S.; Matsumura, T.; Kaneda, Y.; Yorek, M. A.; Beebe, D.; Oates, P. J.; Hammes, H. P. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000, 404, 787–790.
Di Meo, S.; Reed, T. T.; Venditti, P.; Victor, V. M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev. 2016, 2016, Article ID 1245049.
Ha, H.; Kim, K. H. Pathogenesis of diabetic nephropathy: The role of oxidative stress and protein kinase C. Diabetes Res. Clin. Pract. 1999, 45, 147–151.
Thompson, K. H.; Godin, D. V. Micronutrients and antioxidants in the progression of diabetes. Nutr. Res. 1995, 15, 1377–1410.
Newsholme, P.; Cruzat, V. F.; Keane, K. N.; Carlessi, R.; de Bittencourt, P. I., Jr. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J. 2016, 473, 4527–4550.
Jahani, M.; Shokrzadeh, M.; Vafaei–Pou, Z.; Zamani, E.; Shaki, F. Potential role of cerium oxide nanoparticles for attenuation of diabetic nephropathy by inhibition of oxidative damage. Asian J. Anim. Vet. Adv. 2016, 11, 226–234.
BarathManiKanth, S.; Kalishwaralal, K.; Sriram, M.; Pandian, S. R. K.; Youn, H. S.; Eom, S.; Gurunathan, S. Anti–oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J. Nanobiotechnology 2010, 8, 16.
Dkhil, M. A.; Zrieq, R.; Al–Quraishy, S.; Abdel Moneim, A. E. Selenium nanoparticles attenuate oxidative stress and testicular damage in streptozotocin–induced diabetic rats. Molecules 2016, 21, 1517.
Al–Quraishy, S.; Dkhil, M. A.; Abdel Moneim, A. E. Anti–hyperglycemic activity of selenium nanoparticles in streptozotocin–induced diabetic rats. Int. J. Nanomedicine 2015, 10, 6741–6756.
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84.
Alexander, R. W. Hypertension and the pathogenesis of atherosclerosis. Hypertension 1995, 25, 155–161.
Kinscherf, R.; Deigner, H. P.; Usinger, C.; Pill, J.; Wagner, M.; Kamencic, H.; Hou, D.; Chen, M.; Schmiedt, W.; Schrader, M. et al. Induction of mitochondrial manganese superoxide dismutase in macrophages by oxidized LDL: Its relevance in atherosclerosis of humans and heritable hyperlipidemic rabbits. FASEB J. 1997, 11, 1317–1328.
Kinscherf, R.; Wagner, M.; Kamencic, H.; Bonaterra, G. A.; Hou, D. M.; Schiele, R. A.; Deigner, H. P.; Metz, J. Characterization of apoptotic macrophages in atheromatous tissue of humans and heritable hyperlipidemic rabbits. Atherosclerosis 1999, 144, 33–39.
Yang, X. Y.; Li, Y.; Li, Y. D.; Ren, X. M.; Zhang, X. Y.; Hu, D.; Gao, Y. H.; Xing, Y. W.; Shang, H. C. Oxidative stress–mediated atherosclerosis: Mechanisms and therapies. Front. Physiol. 2017, 8, 600.
Wan, W. L.; Lin, Y. J.; Chen, H. L.; Huang, C. C.; Shih, P. C.; Bow, Y. R.; Chia, W. T.; Sung, H. W. In situ nanoreactor for photosynthesizing H2 gas to mitigate oxidative stress in tissue inflammation. J. Am. Chem. Soc. 2017, 139, 12923–12926.
Reczek, C. R.; Chandel, N. S. The two faces of reactive oxygen species in cancer. Annu. Rev. Cancer Biol. 2017, 1, 79–98.
Morgan, M. J.; Liu, Z. G. Crosstalk of reactive oxygen species and NF–κB signaling. Cell Res. 2011, 21, 103–115.
Weinberg, F.; Hamanaka, R.; Wheaton, W. W.; Weinberg, S.; Joseph, J.; Lopez, M.; Kalyanaraman, B.; Mutlu, G. M.; Budinger, G. R. S.; Chandel, N. S. Mitochondrial metabolism and ROS generation are essential for Kras–mediated tumorigenicity. Proc. Natl. Acad. Sci. USA 2010, 107, 8788–8793.
Ye, J. B.; Fan, J.; Venneti, S.; Wan, Y. W.; Pawel, B. R.; Zhang, J.; Finley, L. W. S.; Lu, C.; Lindsten, T.; Cross, J. R. et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov. 2014, 4, 1406–1417.
Huang, L. E.; Arany, Z.; Livingston, D. M.; Bunn, H. F. Activation of hypoxia–inducible transcription factor depends primarily upon redox–sensitive stabilization of its α subunit. J. Biol. Chem. 1996, 271, 32253–32259.
Nelson, K. K.; Melendez, J. A. Mitochondrial redox control of matrix metalloproteinases. Free Radic. Biol. Med. 2004, 37, 768–784.
Diaz, B.; Shani, G.; Pass, I.; Anderson, D.; Quintavalle, M.; Courtneidge, S. A. Tks5–dependent, nox–mediated generation of reactive oxygen species is necessary for invadopodia formation. Sci. Signal. 2009, 2, ra53.
Giannoni, E.; Fiaschi, T.; Ramponi, G.; Chiarugi, P. Redox regulation of anoikis resistance of metastatic prostate cancer cells: Key role for Src and EGFR–mediated pro–survival signals. Oncogene 2009, 28, 2074–2086.
Morry, J.; Ngamcherdtrakul, W.; Yantasee, W. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol. 2017, 11, 240–253.
Prylutska, S.; Grynyuk, I.; Matyshevska, O.; Prylutskyy, Y.; Evstigneev, M.; Scharff, P.; Ritter, U. C60 fullerene as synergistic agent in tumor–inhibitory doxorubicin treatment. Drugs R. D. 2014, 14, 333–340.
Giri, S.; Karakoti, A.; Graham, R. P.; Maguire, J. L.; Reilly, C. M.; Seal, S.; Rattan, R.; Shridhar, V. Nanoceria: A rare–earth nanoparticle as a novel anti–angiogenic therapeutic agent in ovarian cancer. PLoS One 2013, 8, e54578.
Vassie, J. A.; Whitelock, J. M.; Lord, M. S. Endocytosis of cerium oxide nanoparticles and modulation of reactive oxygen species in human ovarian and colon cancer cells. Acta Biomater. 2017, 50, 127–141.
Vassie, J. A.; Whitelock, J. M.; Lord, M. S. Targeted delivery and redox activity of folic acid–functionalized nanoceria in tumor cells. Mol. Pharm. 2018, 15, 994–1004.
Alili, L.; Sack, M.; von Montfort, C.; Giri, S.; Das, S.; Carroll, K. S.; Zanger, K.; Seal, S.; Brenneisen, P. Downregulation of tumor growth and invasion by redoxactive nanoparticles. Antioxid. Redox Signal. 2013, 19, 765–778.
Hijaz, M.; Das, S.; Mert, I.; Gupta, A.; Al–Wahab, Z.; Tebbe, C.; Dar, S.; Chhina, J.; Giri, S.; Munkarah, A. et al. Folic acid tagged nanoceria as a novel therapeutic agent in ovarian cancer. BMC Cancer 2016, 16, 220.
Lin, T. S.; Zhao, X. Z.; Zhao, S.; Yu, H.; Cao, W. M.; Chen, W.; Wei, H.; Guo, H. Q. O2–generating MnO2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia. Theranostics 2018, 8, 990–1004.
Zhu, W. W.; Dong, Z. L.; Fu, T. T.; Liu, J. J.; Chen, Q.; Li, Y. G.; Zhu, R.; Xu, L. G.; Liu, Z. Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy. Adv. Funct. Mater. 2016, 26, 5490–5498.