AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Plasmonic molecular assays: Recent advances and applications for mobile health

Tao YuQingshan Wei( )
Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayCampus Box 7905RaleighNC27695USA
Show Author Information

Graphical Abstract

Abstract

Plasmonics-based biosensing assays have been extensively employed for biomedical applications. Significant advancements in use of plasmonic assays for the construction of point-of-care (POC) diagnostic methods have been made to provide effective and urgent health care of patients, especially in resource- limited settings. This rapidly progressive research area, centered on the unique surface plasmon resonance (SPR) properties of metallic nanostructures with exceptional absorption and scattering abilities, has greatly facilitated the development of cost-effective, sensitive, and rapid strategies for disease diagnostics and improving patient healthcare in both developed and developing worlds. This review highlights the recent advances and applications of plasmonic technologies for highly sensitive protein and nucleic acid biomarker detection. In particular, we focus on the implementation and penetration of various plasmonic technologies in conventional molecular diagnostic assays, and discuss how such modification has resulted in simpler, faster, and more sensitive alternatives that are suited for point-of-use. Finally, integration of plasmonic molecular assays with various portable POC platforms for mobile health applications are highlighted.

References

1

Gubala, V.; Harris, L. F.; Ricco, A. J.; Tan, M. X.; Williams, D. E. Point of care diagnostics: Status and future. Anal. Chem. 2012, 84, 487–515.

2
In vitro diagnostics: Technologies and global markets, ReportLinker, 2017, https://www.giiresearch.com/report/bc345450-vitro-diagnostics-technologies-global-markets.html (accessed May 7, 2018).
3

Bauer, W. S.; Gulka, C. P.; Silva-Baucage, L.; Adams, N. M.; Haselton, F. R.; Wright, D. W. Metal affinity-enabled capture and release antibody reagents generate a multiplex biomarker enrichment system that improves detection limits of rapid diagnostic tests. Anal. Chem. 2017, 89, 10216–10223.

4

Wei, T. Y.; Fu, Y.; Chang, K. H.; Lin, K. J.; Lu, Y. J.; Cheng, C. M. Point-of-care devices using disease biomarkers to diagnose neurodegenerative disorders. Trends Biotechnol. 2018, 36, 290–303.

5

Tüdős, A. J.; Besselink, G. A. J.; Schasfoort, R. B. M. Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 2001, 1, 83–95.

6

Duffy, D.; Mottez, E.; Ainsworth, S.; Buivan, T. P.; Baudin, A.; Vray, M.; Reed, B.; Fontanet, A.; Rohel, A.; Petrov-Sanchez, V. et al. An in vitro diagnostic certified point of care single nucleotide test for IL28B polymorphisms. PLoS One 2017, 12, e0183084.

7

Zarei, M. Portable biosensing devices for point-of-care diagnostics: Recent developments and applications. TrACTrends Anal. Chem. 2017, 91, 26–41.

8

Wang, Y. Y.; Zhou, J. H.; Li, J. H. Construction of plasmonic nano-biosensor-based devices for point-of-care testing. Small Methods 2017, 1, 1700197.

9

Silva, B. M. C.; Rodrigues, J. J. P. C.; de la Torre Díez, I.; López-Coronado, M.; Saleem, K. Mobile-health: A review of current state in 2015. J. Biomed. Inform. 2015, 56, 265–272.

10

Laktabai, J.; Platt, A.; Menya, D.; Turner, E. L.; Aswa, D.; Kinoti, S.; O'Meara, W. P. A mobile health technology platform for quality assurance and quality improvement of malaria diagnosis by community health workers. PLoS One 2018, 13, e0191968.

11

Howes, P. D.; Rana, S.; Stevens, M. M. Plasmonic nanomaterials for biodiagnostics. Chem. Soc. Rev. 2014, 43, 3835–3853.

12

Zhou, W.; Gao, X.; Liu, D. B.; Chen, X. Y. Gold nanoparticles for in vitro diagnostics. Chem. Rev. 2015, 115, 10575–10636.

13

Li, M.; Cushing, S. K.; Wu, N. Q. Plasmon-enhanced optical sensors: A review. Analyst 2015, 140, 386–406.

14

Unser, S.; Bruzas, I.; He, J.; Sagle, L. Localized surface plasmon resonance biosensing: Current challenges and approaches. Sensors 2015, 15, 15684–15716.

15

Sannomiya, T.; Vörös, J. Single plasmonic nanoparticles for biosensing. Trends Biotechnol. 2011, 29, 343–351.

16

Tokel, O.; Inci, F.; Demirci, U. Advances in plasmonic technologies for point of care applications. Chem. Rev. 2014, 114, 5728–5752.

17

Sun, J. S.; Xianyu, Y.; Jiang, X. Y. Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem. Soc. Rev. 2014, 43, 6239–6253.

18

Lim, W. Q.; Gao, Z. Q. Plasmonic nanoparticles in biomedicine. Nano Today 2016, 11, 168–188.

19

Kravets, V. G.; Schedin, F.; Jalil, R.; Britnell, L.; Gorbachev, R. V.; Ansell, D.; Thackray, B.; Novoselov, K. S.; Geim, A. K.; Kabashin, A. V. et al. Singular phase nano-optics in plasmonic metamaterials for label-free singlemolecule detection. Nat. Mater. 2013, 12, 304–309.

20

Zijlstra, P.; Paulo, P. M. R.; Orrit, M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. 2012, 7, 379–382.

21

Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

22

Yang, X. J.; Yu, Y. B.; Gao, Z. Q. A highly sensitive plasmonic DNA assay based on triangular silver nanoprism etching. ACS Nano 2014, 8, 4902–4907.

23

Fathi, F.; Rezabakhsh, A.; Rahbarghazi, R.; Rashidi, M. R. Early-stage detection of VE-cadherin during endothelial differentiation of human mesenchymal stem cells using SPR biosensor. Biosens. Bioelectron. 2017, 96, 358–366.

24

Sendroiu, I. E.; Warner, M. E.; Corn, R. M. Fabrication of silica-coated gold nanorods functionalized with DNA for enhanced surface plasmon resonance imaging biosensing applications. Langmuir 2009, 25, 11282–11284.

25

Shankaran, D. R.; Gobi, K. V.; Miura, N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensor. Actuat. B: Chem. 2007, 121, 158–177.

26

Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493.

27

Hoa, X. D.; Kirk, A. G.; Tabrizian, M. Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosens. Bioelectron. 2007, 23, 151–160.

28

Homola, J.; Yee, S. S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sensor. Actuat. B: Chem. 1999, 54, 3–15.

29

Masson, J. F. Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens. 2017, 2, 16–30.

30

Zhao, W. A.; Brook, M. A.; Li, Y. F. Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 2008, 9, 2363–2371.

31

Ngo, H. T.; Wang, H. N.; Fales, A. M.; Vo-Dinh, T. Label-free DNA biosensor based on SERS Molecular Sentinel on Nanowave chip. Anal. Chem. 2013, 85, 6378–6383.

32

Bauch, M.; Toma, K.; Toma, M.; Zhang, Q. W.; Dostalek, J. Plasmon-enhanced fluorescence biosensors: A review. Plasmonics 2014, 9, 781–799.

33

Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.

34

Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857.

35

Chen, H. J.; Kou, X. S.; Yang, Z.; Ni, W. H.; Wang, J. F. Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008, 24, 5233–5237.

36

Zhou, X.; Wong, T. I.; Song, H. Y.; Wu, L.; Wang, Y.; Bai, P.; Kim, D. H.; Ng, S. H.; Tse, M. S.; Knoll, W. Development of localized surface plasmon resonance-based point-of-care system. Plasmonics 2014, 9, 835–844.

37

Inci, F.; Filippini, C.; Baday, M.; Ozen, M. O.; Calamak, S.; Durmus, N. G.; Wang, S. Q.; Hanhauser, E.; Hobbs, K. S.; Juillard, F. et al. Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE2RD) for diagnostics. Proc. Natl. Acad. Sci. USA 2015, 112, E4354–E4363.

38

Tang, L. H.; Li, J. H. Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics. ACS Sens. 2017, 2, 857–875.

39

Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078–1081.

40

Cutler, J. I.; Auyeung, E.; Mirkin, C. A. Spherical nucleic acids. J. Am. Chem. Soc. 2012, 134, 1376–1391.

41

Lee, J. S.; Han, M. S.; Mirkin, C. A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNAfunctionalized gold nanoparticles. Angew. Chem., Int. Ed. 2007, 46, 4093–4096.

42

Jia, Y. X.; Guo, Y. M.; Wang, S. W.; Chen, W. W.; Zhang, J. J.; Zheng, W. S.; Jiang, X. Y. Nanocrystalline cellulose mediated seed-growth for ultra-robust colorimetric detection of hydrogen sulfide. Nanoscale 2017, 9, 9811–9817.

43

Gu, Y.; Song, J.; Li, M. X.; Zhang, T. T.; Zhao, W.; Xu, J. J.; Liu, M. L.; Chen, H. Y. Ultrasensitive microRNA assay via surface plasmon resonance responses of Au@Ag nanorods etching. Anal. Chem. 2017, 89, 10585–10591.

44

Kim, J. Y.; Zeng, Z. C.; Xiao, L. F.; Schultz, Z. D. Elucidating protein/ligand recognition with combined surface plasmon resonance and surface enhanced Raman spectroscopy. Anal. Chem. 2017, 89, 13074–13081.

45

Muehlethaler, C.; Leona, M.; Lombardi, J. R. Review of surface enhanced Raman scattering applications in forensic science. Anal. Chem. 2016, 88, 152–169.

46

Lu, J. D.; Spasic, D.; Delport, F.; Van Stappen, T.; Detrez, I.; Daems, D.; Vermeire, S.; Gils, A.; Lammertyn, J. Immunoassay for detection of infliximab in whole blood using a fiber-optic surface plasmon resonance biosensor. Anal. Chem. 2017, 89, 3664–3671.

47

Kim, S.; Wark, A. W.; Lee, H. J. Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance. Anal. Chem. 2016, 88, 7793–7799.

48

Kim, H.; Lee, J. U.; Song, S.; Kim, S.; Sim, S. J. A shape-code nanoplasmonic biosensor for multiplex detection of Alzheimer's disease biomarkers. Biosens. Bioelectron. 2018, 101, 96–102.

49

Bui, M. P. N.; Ahmed, S.; Abbas, A. Single-digit pathogen and attomolar detection with the naked eye using liposomeamplified plasmonic immunoassay. Nano Lett. 2015, 15, 6239–6246.

50

Valentini, P.; Pompa, P. P. A universal polymerase chain reaction developer. Angew. Chem., Int. Ed. 2016, 55, 2157–2160.

51

Xiong, L. H.; He, X. W.; Xia, J. J.; Ma, H. W.; Yang, F.; Zhang, Q.; Huang, D.; Chen, L.; Wu, C. L.; Zhang, X. M. et al. Highly sensitive naked-eye assay for enterovirus 71 detection based on catalytic nanoparticle aggregation and immunomagnetic amplification. ACS Appl. Mater. Interfaces 2017, 9, 14691–14699.

52

Teengam, P.; Siangproh, W.; Tuantranont, A.; Vilaivan, T.; Chailapakul, O.; Henry, C. S. Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal. Chem. 2017, 89, 5428–5435.

53

Chuong, T. T.; Pallaoro, A.; Chaves, C. A.; Li, Z.; Lee, J.; Eisenstein, M.; Stucky, G. D.; Moskovits, M.; Soh, H. T. Dual-reporter SERS-based biomolecular assay with reduced false-positive signals. Proc. Natl. Acad. Sci. USA 2017, 114, 9056–9061.

54

Tang, B. C.; Wang, J. J.; Hutchison, J. A.; Ma, L.; Zhang, N.; Guo, H.; Hu, Z. B.; Li, M.; Zhao, Y. L. Ultrasensitive, multiplex Raman frequency shift immunoassay of liver cancer biomarkers in physiological media. ACS Nano 2016, 10, 871–879.

55

Fu, X. L.; Cheng, Z. Y.; Yu, J. M.; Choo, P.; Chen, L. X.; Choo, J. A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1DNA. Biosens. Bioelectron. 2016, 78, 530–537.

56

Mei, Z.; Tang, L. Surface-plasmon-coupled fluorescence enhancement based on ordered gold nanorod array biochip for ultrasensitive DNA analysis. Anal. Chem. 2017, 89, 633–639.

57

Zhang, B.; Jarrell, J. A.; Price, J. V.; Tabakman, S. M.; Li, Y. G.; Gong, M.; Hong, G. S.; Feng, J.; Utz, P. J.; Dai, H. J. An integrated peptide-antigen microarray on plasmonic gold films for sensitive human antibody profiling. PLoS One 2013, 8, e71043.

58

Liu, B.; Li, Y. L.; Wan, H.; Wang, L.; Xu, W.; Zhu, S. J.; Liang, Y. Y.; Zhang, B.; Lou, J. T.; Dai, H. J. et al. High performance, multiplexed lung cancer biomarker detection on a plasmonic gold chip. Adv. Funct. Mater. 2016, 26, 7994–8002.

59

Song, H. Y.; Wong, T. I.; Sadovoy, A.; Wu, L.; Bai, P.; Deng, J.; Guo, S. F.; Wang, Y.; Knoll, W.; Zhou, X. D. Imprinted gold 2D nanoarray for highly sensitive and convenient PSA detection via plasmon excited quantum dots. Lab Chip 2015, 15, 253–263.

60

Tu, X. Y.; Muhammad, P.; Liu, J.; Ma, Y. Y.; Wang, S. S.; Yin, D. Y.; Liu, Z. Molecularly imprinted polymer-based plasmonic immunosandwich assay for fast and ultrasensitive determination of trace glycoproteins in complex samples. Anal. Chem. 2016, 88, 12363–12370.

61

Liu, K.; Bai, Y. C.; Zhang, L.; Yang, Z. B.; Fan, Q. K.; Zheng, H. Q.; Yin, Y. D.; Gao, C. B. Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis. Nano Lett. 2016, 16, 3675–3681.

62

Zheng, J. W.; Zhou, Y. G.; Li, X. W.; Ji, Y.; Lu, T. H.; Gu, R. A. Surface-enhanced Raman scattering of 4-aminothiophenol in assemblies of nanosized particles and the macroscopic surface of silver. Langmuir 2003, 19, 632–636.

63

Yang, K. H.; Liu, Y. C.; Yu, C. C. Enhancements in intensity and stability of surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates. J. Mater. Chem. 2008, 18, 4849–4855.

64

Chang, C. C.; Hsu, T. C.; Liu, Y. C.; Yang, K. H. Surface-enhanced Raman scattering-active silver substrates electrochemically prepared in solutions containing bielectrolytes. J. Mater. Chem. 2011, 21, 6660–6667.

65

Shin, H. H.; Yeon, G. J.; Choi, H. -K.; Park, S. M.; Lee, K. S.; Kim, Z. H. Frequency-domain proof of the existence of atomic-scale SERS hot-spots. Nano Lett. 2018, 18, 262–271.

66

Qian, X. M.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. M. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 2008, 26, 83–90.

67

Marks, H.; Schechinger, M.; Garza, J.; Locke, A.; Coté, G. Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care. Nanophotonics 2017, 6, 681–701.

68

Granger, J. H.; Schlotter, N. E.; Crawford, A. C.; Porter, M. D. Prospects for point-of-care pathogen diagnostics using surface-enhanced Raman scattering (SERS). Chem. Soc. Rev. 2016, 45, 3865–3882.

69

Vasilev, K.; Knoll, W.; Kreiter, M. Fluorescence intensities of chromophores in front of a thin metal film. J. Chem. Phys. 2004, 120, 3439–3445.

70

Enderlein, J. A theoretical investigation of single-molecule fluorescence detection on thin metallic layers. Biophys. J. 2000, 78, 2151–2158.

71

Loebermann, T.; Knoll, W. Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids Surf. A: Physicochem. Eng. Aspects 2000, 171, 115–130.

72

Acuna, G. P.; Möller, F. M.; Holzmeister, P.; Beater, S.; Lalkens, B.; Tinnefeld, P. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 2012, 338, 506–510.

73

Kinkhabwala, A.; Yu, Z. F.; Fan, S. H.; Avlasevich, Y.; Müllen, K.; Moerner, W. E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 2009, 3, 654–657.

74

Punj, D.; Mivelle, M.; Moparthi, S. B.; van Zanten, T. S.; Rigneault, H.; van Hulst, N. F.; García-Parajó, M. F.; Wenger, J. A plasmonic 'antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations. Nat. Nanotechnol. 2013, 8, 512–516.

75

Zhang, B.; Price, J.; Hong, G. S.; Tabakman, S. M.; Wang, H. L.; Jarrell, J. A.; Feng, J.; Utz, P. J.; Dai, H. J. Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence. Nano Res. 2013, 6, 113–120.

76

Tabakman, S. M.; Lau, L.; Robinson, J. T.; Price, J.; Sherlock, S. P.; Wang, H. L.; Zhang, B.; Chen, Z.; Tangsombatvisit, S.; Jarrell, J. A. et al. Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat. Commun. 2011, 2, 466.

77

Zhang, B.; Kumar, R. B.; Dai, H. J.; Feldman, B. J. A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes. Nat. Med. 2014, 20, 948–953.

78

Hong, G. S.; Tabakman, S. M.; Welsher, K.; Chen, Z.; Robinson, J. T.; Wang, H. L.; Zhang, B.; Dai, H. J. Nearinfrared-fluorescence-enhanced molecular imaging of live cells on gold substrates. Angew. Chem., Int. Ed. 2011, 50, 4644–4648.

79

Guo, L. H.; Jackman, J. A.; Yang, H. H.; Chen, P.; Cho, N. J.; Kim, D. H. Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today 2015, 10, 213–239.

80

Engvall, E.; Perlmann, P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 1971, 8, 871–874.

81

Liang, Y.; Huang, X. L.; Chen, X. R.; Zhang, W. J.; Ping, G.; Xiong, Y. H. Plasmonic ELISA for naked-eye detection of ochratoxin A based on the tyramine-H2O2 amplification system. Sensor. Actuat. B: Chem. 2018, 259, 162–169.

82

Zhang, S. Y.; Garcia-D'Angeli, A.; Brennan, J. P.; Huo, Q. Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general. Analyst 2014, 139, 439–445.

83

de la Rica, R.; Stevens, M. M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotechnol. 2012, 7, 821–824.

84

de la Rica, R.; Stevens, M. M. Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye. Nat. Protoc. 2013, 8, 1759–1764.

85

Cecchin, D.; de la Rica, R.; Bain, R. E. S.; Finnis, M. W.; Stevens, M. M.; Battaglia, G. Plasmonic ELISA for the detection of gp120 at ultralow concentrations with the naked eye. Nanoscale 2014, 6, 9559–9562.

86

Peng, M. P.; Ma, W.; Long, Y. T. Alcohol Dehydrogenasecatalyzed gold nanoparticle seed-mediated growth allows reliable detection of disease biomarkers with the naked eye. Anal. Chem. 2015, 87, 5891–5896.

87

Ambrosi, A.; Airò, F.; Merkoçi, A. Enhanced gold nanoparticle based ELISA for a breast cancer biomarker. Anal. Chem. 2010, 82, 1151–1156.

88

Liu, D. B.; Yang, J.; Wang, H. F.; Wang, Z. L.; Huang, X. L.; Wang, Z. T.; Niu, G.; Hight Walker, A. R.; Chen, X. Y. Glucose oxidase-catalyzed growth of gold nanoparticles enables quantitative detection of attomolar cancer biomarkers. Anal. Chem. 2014, 86, 5800–5806.

89

Zhou, F.; Wang, M. M.; Yuan, L.; Cheng, Z. P.; Wu, Z. Q.; Chen, H. Sensitive sandwich ELISA based on a gold nanoparticle layer for cancer detection. Analyst 2012, 137, 1779–1784.

90

Jia, C. P.; Zhong, X. Q.; Hua, B.; Liu, M. Y.; Jing, F. X.; Lou, X. H.; Yao, S. H.; Xiang, J. Q.; Jin, Q. H.; Zhao, J. L. Nano-ELISA for highly sensitive protein detection. Biosens. Bioelectron. 2009, 24, 2836–2841.

91

Liu, M. Y.; Jia, C. P.; Huang, Y. Y.; Lou, X. H.; Yao, S. H.; Jin, Q. H.; Zhao, J. L.; Xiang, J. Q. Highly sensitive protein detection using enzyme-labeled gold nanoparticle probes. Analyst 2010, 135, 327–331.

92

Liang, J. J.; Yao, C. Z.; Li, X. Q.; Wu, Z.; Huang, C. H.; Fu, Q. Q.; Lan, C. F.; Cao, D. L.; Tang, Y. Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen. Biosens. Bioelectron. 2015, 69, 128–134.

93

Nie, X. M.; Huang, R.; Dong, C. X.; Tang, L. J.; Gui, R.; Jiang, J. H. Plasmonic ELISA for the ultrasensitive detection of Treponema pallidum. Biosens. Bioelectron. 2014, 58, 314–319.

94

Rissin, D. M.; Kan, C. W.; Campbell, T. G.; Howes, S. C.; Fournier, D. R.; Song, L.; Piech, T.; Patel, P. P.; Chang, L.; Rivnak, A. J. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 2010, 28, 595–599.

95

Chen, S.; Svedendahl, M.; Antosiewicz, T. J.; Käll, M. Plasmon-enhanced enzyme-linked immunosorbent assay on large arrays of individual particles made by electron beam lithography. ACS Nano 2013, 7, 8824–8832.

96

Chen, S.; Svedendahl, M.; van Duyne, R. P.; Käll, M. Plasmon-enhanced colorimetric ELISA with single molecule sensitivity. Nano Lett. 2011, 11, 1826–1830.

97

Sia, S. K.; Linder, V.; Parviz, B. A.; Siegel, A.; Whitesides, G. M. An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angew. Chem., Int. Ed. 2004, 43, 498–502.

98

Gupta, S.; Huda, S.; Kilpatrick, P. K.; Velev, O. D. Characterization and optimization of gold nanoparticlebased silver-enhanced immunoassays. Anal. Chem. 2007, 79, 3810–3820.

99

Yang, C. T.; Wu, L.; Bai, P.; Thierry, B. Investigation of plasmonic signal enhancement based on long range surface plasmon resonance with gold nanoparticle tags. J. Mater. Chem. C 2016, 4, 9897–9904.

100

Lyon, L. A.; Musick, M. D.; Natan, M. J. Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal. Chem. 1998, 70, 5177–5183.

101

Kwon, M. J.; Lee, J.; Wark, A. W.; Lee, H. J. Nanoparticleenhanced surface plasmon resonance detection of proteins at attomolar concentrations: Comparing different nanoparticle shapes and sizes. Anal. Chem. 2012, 84, 1702–1707.

102

Guarrotxena, N.; Liu, B.; Fabris, L.; Bazan, G. C. Antitags: Nanostructured tools for developing SERS-based ELISA analogs. Adv. Mater. 2010, 22, 4954–4958.

103

Li, X. Y.; Kuznetsova, T.; Cauwenberghs, N.; Wheeler, M.; Maecker, H.; Wu, J. C.; Haddad, F.; Dai, H. J. Autoantibody profiling on a plasmonic nano-gold chip for the early detection of hypertensive heart disease. Proc. Natl. Acad. Sci. USA 2017, 114, 7089–7094.

104

Zhao, Y. X.; Chen, F.; Li, Q.; Wang, L. H.; Fan, C. H. Isothermal amplification of nucleic acids. Chem. Rev. 2015, 115, 12491–12545.

105

White, P. L.; Hibbitts, S. J.; Perry, M. D.; Green, J.; Stirling, E.; Woodford, L.; McNay, G.; Stevenson, R.; Barnes, R. A. Evaluation of a commercially developed semiautomated PCR-surface-enhanced Raman scattering assay for diagnosis of invasive fungal disease. J. Clin. Microbiol. 2014, 52, 3536–3543.

106

Almassian, D. R.; Cockrell, L. M.; Nelson, W. M. Portable nucleic acid thermocyclers. Chem. Soc. Rev. 2013, 42, 8769–8798.

107

Zhang, C. S.; Xing, D. Single-molecule DNA amplification and analysis using microfluidics. Chem. Rev. 2010, 110, 4910–4947.

108

Lee, D.; Chou, W. P.; Yeh, S. H.; Chen, P. J.; Chen, P. H. DNA detection using commercial mobile phones. Biosens. Bioelectron. 2011, 26, 4349–4354.

109

Myers, F. B.; Henrikson, R. H.; Bone, J.; Lee, L. P. A handheld point-of-care genomic diagnostic system. PLoS One 2013, 8, e70266.

110

Priye, A.; Wong, S.; Bi, Y. P.; Carpio, M.; Chang, J.; Coen, M.; Cope, D.; Harris, J.; Johnson, J.; Keller, A. et al. Lab-on-a-Drone: Toward pinpoint deployment of smartphone-enabled nucleic acid-based diagnostics for mobile health care. Anal. Chem. 2016, 88, 4651–4660.

111

Sawata, S.; Kai, E.; Ikebukuro, K.; Iida, T.; Honda, T.; Karube, I. Application of peptide nucleic acid to the direct detection of deoxyribonucleic acid amplified by polymerase chain reaction. Biosens. Bioelectron. 1999, 14, 397–404.

112

Kai, E.; Sawata, S.; Ikebukuro, K.; Iida, T.; Honda, T.; Karube, I. Detection of PCR products in solution using surface plasmon resonance. Anal. Chem. 1999, 71, 796–800.

113

Wu, J. L.; Huang, Y.; Bian, X. T.; Li, D. D.; Cheng, Q.; Ding, S. J. Biosensing of BCR/ABL fusion gene using an intensity-interrogation surface plasmon resonance imaging system. Opt. Commun. 2016, 377, 24–32.

114

Yao, D.; Yu, F.; Kim, J.; Scholz, J.; Nielsen, P. E.; Sinner, E. K.; Knoll, W. Surface plasmon field-enhanced fluorescence spectroscopy in PCR product analysis by peptide nucleic acid probes. Nucleic Acids Res. 2004, 32, e177.

115

Faulds, K.; Barbagallo, R. P.; Keer, J. T.; Smith, W. E.; Graham, D. SERRS as a more sensitive technique for the detection of labelled oligonucleotides compared to fluorescence. Analyst 2004, 129, 567–568.

116

Van Lierop, D.; Larmour, I. A.; Faulds, K.; Graham, D. SERS primers and their mode of action for pathogen DNA detection. Anal. Chem. 2013, 85, 1408–1414.

117

Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. One-pot polymerase chain reaction with gold nanoparticles for rapid and ultrasensitive DNA detection. Nano Res. 2010, 3, 557–563.

118

Deng, H.; Xu, Y.; Liu, Y. H.; Che, Z. J.; Guo, H. L.; Shan, S. X.; Sun, Y.; Liu, X. F.; Huang, K. Y.; Ma, X. W. et al. Gold nanoparticles with asymmetric polymerase chain reaction for colorimetric detection of DNA sequence. Anal. Chem. 2012, 84, 1253–1258.

119

Li, F.; Li, F. L.; Yang, G. T.; Aguilar, Z. P.; Lai, W. H.; Xu, H. Y. Asymmetric polymerase chain assay combined with propidium monoazide treatment and unmodified gold nanoparticles for colorimetric detection of viable emetic Bacillus cereus in milk. Sensor. Actuat. B: Chem. 2018, 255, 1455–1461.

120

Roche, P. J. R.; Beitel, L. K.; Khan, R.; Lumbroso, R.; Najih, M.; Cheung, M. C. K.; Thiemann, J.; Veerasubramanian, V.; Trifiro, M.; Chodavarapu, V. P. et al. Demonstration of a plasmonic thermocycler for the amplification of human androgen receptor DNA. Analyst 2012, 137, 4475–4481.

121

Son, J. H.; Cho, B.; Hong, S.; Lee, S. H.; Hoxha, O.; Haack, A. J.; Lee, L. P. Ultrafast photonic PCR. Light-Sci. Appl. 2015, 4, e280.

122

Lee, J. H.; Cheglakov, Z.; Yi, J.; Cronin, T. M.; Gibson, K. J.; Tian, B. Z.; Weizmann, Y. Plasmonic photothermal gold bipyramid nanoreactors for ultrafast real-time bioassays. J. Am. Chem. Soc. 2017, 139, 8054–8057.

123

Roche, P. J. R.; Najih, M.; Lee, S. S.; Beitel, L. K.; Carnevale, M. L.; Paliouras, M.; Kirk, A. G.; Trifiro, M. A. Real time plasmonic qPCR: How fast is ultra-fast? 30 cycles in 54 seconds. Analyst 2017, 142, 1746–1755.

124

Yu, T.; Dai, P. P.; Xu, J. J.; Chen, H. Y. Highly sensitive colorimetric cancer cell detection based on dual signal amplification. ACS Appl. Mater. Interfaces 2016, 8, 4434–4441.

125

Zhang, X. X.; Xiao, K. Y.; Cheng, L. W.; Chen, H.; Liu, B. H.; Zhang, S.; Kong, J. L. Visual and highly sensitive detection of cancer cells by a colorimetric aptasensor based on cell-triggered cyclic enzymatic signal amplification. Anal. Chem. 2014, 86, 5567–5572.

126

Xu, W.; Xue X. J.; Li, T. H.; Zeng H. Q.; Liu X. G. Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew. Chem., Int. Ed. 2009, 48, 6849–6852.

127

Wong, J. K.; Yip, S. P.; Lee, T. M. H. Ultrasensitive and closed-tube colorimetric loop-mediated isothermal amplification assay using carboxyl-modified gold nanoparticles. Small 2014, 10, 1495–1499.

128

Bozorgmehr, A.; Yazdanparast, R.; Mollasalehi, H. Noncrosslinking gold nanoprobe-LAMP for simple, colorimetric, and specific detection of Salmonella typhi. J. Nanopart. Res. 2016, 18, 351.

129

Qin, A. L.; Fu, L. T.; Wong, J. K. F.; Chau, L. Y.; Yip, S. P.; Lee, T. M. H. Precipitation of PEG/carboxyl-modified gold nanoparticles with magnesium pyrophosphate: A new platform for real-time monitoring of loop-mediated isothermal amplification. ACS Appl. Mater. Interfaces 2017, 9, 10472–10480.

130

Li, J. S.; Deng, T.; Chu, X.; Yang, R. H.; Jiang, J. H.; Shen, G. L.; Yu, R. Q. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Anal. Chem. 2010, 82, 2811–2816.

131

Liu, P.; Yang, X. H.; Sun, S.; Wang, Q.; Wang, K. M.; Huang, J.; Liu, J. B.; He, L. L. Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. Anal. Chem. 2013, 85, 7689–7695.

132

Rana, M.; Balcioglu, M.; Kovach, M.; Hizir, M. S.; Robertson, N. M.; Khan, I.; Yigit, M. V. Reprogrammable multiplexed detection of circulating oncomiRs using hybridization chain reaction. Chem. Commun. 2016, 52, 3524–3527.

133

Yun, W.; Jiang, J. L.; Cai, D. Z.; Zhao, P. X.; Liao, J. S.; Sang, G. Ultrasensitive visual detection of DNA with tunable dynamic range by using unmodified gold nanoparticles and target catalyzed hairpin assembly amplification. Biosens. Bioelectron. 2016, 77, 421–427.

134

Kato, D.; Oishi, M. Ultrasensitive detection of DNA and RNA based on enzyme-free click chemical ligation chain reaction on dispersed gold nanoparticles. ACS Nano 2014, 8, 9988–9997.

135

Oishi, M.; Sugiyama, S. An efficient particle-based DNA circuit system: Catalytic disassembly of DNA/PEG-modified gold nanoparticle-magnetic bead composites for colorimetric detection of miRNA. Small 2016, 12, 5153–5158.

136

Nawattanapaiboon, K.; Kiatpathomchai, W.; Santanirand, P.; Vongsakulyanon, A.; Amarit, R.; Somboonkaew, A.; Sutapun, B.; Srikhirin, T. SPR-DNA array for detection of methicillin-resistant Staphylococcus aureus (MRSA) in combination with loop-mediated isothermal amplification. Biosens. Bioelectron. 2015, 74, 335–340.

137

He, P.; Qiao, W. P.; Liu, L. J.; Zhang, S. S. A highly sensitive surface plasmon resonance sensor for the detection of DNA and cancer cells by a target-triggered multiple signal amplification strategy. Chem. Commun. 2014, 50, 10718–10721.

138

Zeng, K.; Li, H. Y.; Peng, Y. Y. Gold nanoparticle enhanced surface plasmon resonance imaging of microRNA-155 using a functional nucleic acid-based amplification machine. Microchim. Acta 2017, 184, 2637–2644.

139

Sendroiu, I. E.; Gifford, L. K.; Lupták, A.; Corn, R. M. Ultrasensitive DNA microarray biosensing via in situ RNA transcription-based amplification and nanoparticle-enhanced SPR imaging. J. Am. Chem. Soc. 2011, 133, 4271–4273.

140

Ding, X. J.; Cheng, W.; Li, Y. J.; Wu, J. L.; Li, X. M.; Cheng, Q.; Ding, S. J. An enzyme-free surface plasmon resonance biosensing strategy for detection of DNA and small molecule based on nonlinear hybridization chain reaction. Biosens. Bioelectron. 2017, 87, 345–351.

141

Ding, X. J.; Yan, Y. R.; Li, S. Q.; Zhang, Y.; Cheng, W.; Cheng, Q.; Ding, S. J. Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA super-sandwich assemblies and streptavidin signal amplification. Anal. Chim. Acta 2015, 874, 59–65.

142

Guo, B.; Cheng, W.; Xu, Y. J.; Zhou, X. Y.; Li, X. M.; Ding, X. J.; Ding, S. J. A simple surface plasmon resonance biosensor for detection of PML/RARα based on heterogeneous fusion gene-triggered nonlinear hybridization chain reaction. Sci. Rep. 2017, 7, 14037.

143

Yao, G. H.; Liang, R. P.; Yu, X. D.; Huang, C. F.; Zhang, L.; Qiu, J. D. Target-triggering multiple-cycle amplification strategy for ultrasensitive detection of adenosine based on surface plasma resonance techniques. Anal. Chem. 2015, 87, 929–936.

144

Yao, G. H.; Liang, R. P.; Huang, C. F.; Zhang, L.; Qiu, J. D. Enzyme-free surface plasmon resonance aptasensor for amplified detection of adenosine via target-triggering strand displacement cycle and Au nanoparticles. Anal. Chim. Acta 2015, 871, 28–34.

145

Wang, Q.; Liu, R. J.; Yang, X. H.; Wang, K. M.; Zhu, J. Q.; He, L. L.; Li, Q. Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich. Sensor. Actuat. B: Chem. 2016, 223, 613–620.

146

Diao, W.; Tang, M.; Ding, S. J.; Li, X. M.; Cheng, W. B.; Mo, F.; Yan, X. Y.; Ma, H. M.; Yan, Y. R. Highly sensitive surface plasmon resonance biosensor for the detection of HIV-related DNA based on dynamic and structural DNA nanodevices. Biosens. Bioelectron. 2018, 100, 228–234.

147

Yin, F. F.; Liu, H. Q.; Li, Q.; Gao, X.; Yin, Y. M.; Liu, D. B. Trace microRNA quantification by means of plasmonenhanced hybridization chain reaction. Anal. Chem. 2016, 88, 4600–4604.

148

Hu, J.; Zhang, C. Y. Sensitive detection of nucleic acids with rolling circle amplification and surface-enhanced Raman scattering spectroscopy. Anal. Chem. 2010, 82, 8991–8997.

149

Li, Y.; Lei, C. C.; Zeng, Y.; Ji, X. T.; Zhang, S. S. Sensitive SERS detection of DNA and lysozyme based on polymerase assisted cross strand-displacement amplification. Chem. Commun. 2012, 48, 10892–10894.

150

Wang, S. Y.; Yang, H. W.; Zhang, H. T.; Yang, F. H.; Zhou, M. S.; Jia, C. W.; Lan, Y. L.; Ma, Y. M.; Zhou, L. Y.; Tian, S. et al. A surface plasmon resonance-based system to genotype human papillomavirus. Cancer Genet. Cytogenet. 2010, 200, 100–105.

151

Qu, S.; Huang, J.; Zhao, J.; Zhao, X.; Deng, H.; Yang, H.; Chen, W.; Liu, L.; Zhang, L.; Gao, S. A comparison of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and surface plasmon resonance for genotyping of high-risk human papillomaviruses. Intervirology 2011, 54, 326–332.

152

Okumura, S.; Kuroda, R.; Inouye, K. Single nucleotide polymorphism typing with a surface plasmon resonancebased sensor using hybridization enhancement blockers. Appl. Biochem. Biotechnol. 2014, 174, 494–505.

153

Mariani, S.; Scarano, S.; Carrai, M.; Barale, R.; Minunni, M. Direct genotyping of C3435T single nucleotide polymorphism in unamplified human MDR1 gene using a surface plasmon resonance imaging DNA sensor. Anal. Bioanal. Chem. 2015, 407, 4023–4028.

154

Zhong, X. B.; Reynolds, R.; Kidd, J. R.; Kidd, K. K.; Jenison, R.; Marlar, R. A.; Ward, D. C. Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips. Proc. Natl. Acad. Sci. USA 2003, 100, 11559–11564.

155

Li, Y.; Wark, A. W.; Lee, H. J.; Corn, R. M. Singlenucleotide polymorphism genotyping by nanoparticleenhanced surface plasmon resonance imaging measurements of surface ligation reactions. Anal. Chem. 2006, 78, 3158–3164.

156

Hibbitts, S.; White, P. L.; Green, J.; McNay, G.; Graham, D.; Stevenson, R. Human papilloma virus genotyping by surface-enhanced Raman scattering. Anal. Methods 2014, 6, 1288–1290.

157

Lowe, A. J.; Huh, Y. S.; Strickland, A. D.; Erickson, D.; Batt, C. A. Multiplex single nucleotide polymorphism genotyping utilizing ligase detection reaction coupled surface enhanced Raman spectroscopy. Anal. Chem. 2010, 82, 5810–5814.

158

Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008, 26, 1135–1145.

159

Metzker, M. L. Sequencing technologies—the next generation. Nat. Rev. Genet. 2010, 11, 31–46.

160

Mardis, E. R. DNA sequencing technologies: 2006–2016. Nat. Protoc. 2017, 12, 213–218.

161

Goodwin, S.; McPherson, J. D.; McCombie, W. R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016, 17, 333–351.

162

Rothberg, J. M.; Hinz, W.; Rearick, T. M.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J. H.; Johnson, K.; Milgrew, M. J.; Edwards, M. et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011, 475, 348–352.

163

Ashton, P. M.; Nair, S.; Dallman, T.; Rubino, S.; Rabsch, W.; Mwaigwisya, S.; Wain, J.; O'Grady, J. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat. Biotechnol. 2015, 33, 296–300.

164

Eif, J.; Fehr, A.; Gray, J.; Luong, K.; Lyle, J.; Otto, G.; Peluso, P.; Rank, D.; Baybayan, P.; Bettman, B. et al. Real-time DNA sequencing from single polymerase molecules. Science 2009, 323, 133–138.

165

Flusberg, B. A.; Webster, D. R.; Lee, J. H.; Travers, K. J.; Olivares, E. C.; Clark, T. A.; Korlach, J.; Turner, S. W. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 2010, 7, 461–465.

166

Levene, M. J.; Korlach, J.; Turner, S. W.; Foquet, M.; Craighead, H. G.; Webb, W. W. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 2003, 299, 682–686.

167

Bailo, E.; Deckert, V. Tip-enhanced Raman spectroscopy of single RNA strands: Towards a novel direct-sequencing method. Angew. Chem., Int. Ed. 2008, 47, 1658–1661.

168

Palla, M.; Guo, W. J.; Shi, S. D.; Li, Z. M.; Wu, J.; Jockusch, S.; Guo, C.; Russo, J. J.; Turro, N. J.; Ju, J. Y. DNA sequencing by synthesis using 3'-O-azidomethyl nucleotide reversible terminators and surface-enhanced Raman spectroscopic detection. RSC Adv. 2014, 4, 49342–49346.

169

Fotouhi, B.; Ahmadi, V.; Faramarzi, V. Nano-plasmonicbased structures for DNA sequencing. Opt. Lett. 2016, 41, 4229–4232.

170

Schmieder, S.; Weißpflog, J.; Danz, N.; Hübner, M.; Kreth, S.; Klotzbach, U.; Sonntag, F. Ultrasensitive SPR detection of miRNA-93 using antibody-enhanced and enzymatic signal amplification. Eng. Life Sci. 2017, 17, 1264–1270.

171

Tokel, O.; Yildiz, U. H.; Inci, F.; Durmus, N. G.; Ekiz, O. O.; Turker, B.; Cetin, C.; Rao, S.; Sridhar, K.; Natarajan, N. et al. Portable microfluidic integrated plasmonic platform for pathogen detection. Sci. Rep. 2015, 5, 9152.

172

Aćimović, S. S.; Ortega, M. A.; Sanz, V.; Berthelot, J.; Garcia-Cordero, J. L.; Renger, J.; Maerkl, S. J.; Kreuzer, M. P.; Quidant, R. LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Lett. 2014, 14, 2636–2641.

173

Wang, C.; Yu, C. X. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling. Nanotechnology 2015, 26, 092001.

174

Choi, N.; Lee, J.; Ko, J.; Jeon, J. H.; Rhie, G. E.; de Mello, A. J.; Choo, J. Integrated SERS-based microdroplet platform for the automated immunoassay of F1 antigens in Yersinia pestis. Anal. Chem. 2017, 89, 8413–8420.

175

Kim, D. J.; Jeon, T. Y.; Park, S. G.; Han, H. J.; Im, S. H.; Kim, D. H.; Kim, S. H. Uniform microgels containing agglomerates of silver nanocubes for molecular sizeselectivity and high SERS activity. Small 2017, 13, 1604048.

176

Kurita, R.; Yanagisawa, H.; Yoshioka, K.; Niwa, O. On-chip sequence-specific immunochemical epigenomic analysis utilizing outward-turned cytosine in a DNA bulge with handheld surface plasmon resonance equipment. Anal. Chem. 2015, 87, 11581–11586.

177

Wang, H. S.; Wang, C.; He, Y. K.; Xiao, F. N.; Bao, W. J.; Xia, X. H.; Zhou, G. J. Core-shell Ag@SiO2 nanoparticles concentrated on a micro/nanofluidic device for surface plasmon resonance-enhanced fluorescent detection of highly reactive oxygen species. Anal. Chem. 2014, 86, 3013–3019.

178

Li, J.; Skeete, Z.; Shan, S. Y.; Yan, S.; Kurzatkowska, K.; Zhao, W.; Ngo, Q. M.; Holubovska, P.; Luo, J.; Hepel, M. et al. Surface enhanced Raman scattering detection of cancer biomarkers with bifunctional nanocomposite probes. Anal. Chem. 2015, 87, 10698–10702.

179

Yamada, K.; Shibata, H.; Suzuki, K.; Citterio, D. Toward practical application of paper-based microfluidics for medical diagnostics: State-of-the-art and challenges. Lab Chip 2017, 17, 1206–1249.

180

Akyazi, T.; Basabe-Desmonts, L.; Benito-Lopez, F. Review on microfluidic paper-based analytical devices towards commercialisation. Anal. Chim. Acta 2018, 1001, 1–17.

181

Yetisen, A. K.; Akram, M. S.; Lowe, C. R. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 2013, 13, 2210–2251.

182

Yen, C. W.; de Puig, H.; Tam, J. O.; Gómez-Márquez, J.; Bosch, I.; Hamad-Schifferli, K.; Gehrke, L. Multicolored silver nanoparticles for multiplexed disease diagnostics: Distinguishing dengue, yellow fever, and Ebola viruses. Lab Chip 2015, 15, 1638–1641.

183

Mosley, G. L.; Nguyen, P.; Wu, B. M.; Kamei, D. T. Development of quantitative radioactive methodologies on paper to determine important lateral-flow immunoassay parameters. Lab Chip 2016, 16, 2871–2881.

184
OraQuick In-Home HIV Test. https://www.fda.gov/BiologicsBloodVaccines/BloodBloodProducts/ApprovedProducts/PremarketApprovalsPMAs/ucm310436.htm (accessed May 7, 2018).
185

Choi, J. R.; Tang, R. H.; Wang, S. Q.; Wan Abas, W. A. B.; Pingguan-Murphy, B.; Xu, F. Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics. Biosens. Bioelectron. 2015, 74, 427–439.

186

Zhan, L.; Guo, S. Z.; Song, F. Y.; Gong, Y.; Xu, F.; Boulware, D. R.; McAlpine, M. C.; Chan, W. C. W.; Bischof, J. C. The role of nanoparticle design in determining analytical performance of lateral flow immunoassays. Nano Lett. 2017, 17, 7207–7212.

187

Gao, Z. Q.; Ye, H. H.; Tang, D. Y.; Tao, J.; Habibi, S.; Minerick, A.; Tang, D. P.; Xia, X. H. Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett. 2017, 17, 5572–5579.

188
BioReady Nanoparticles for Lateral Flow. https://nanocomposix.com/collectionsbioready-nanoparticles (accessed May 7, 2018).
189

Saha, A.; Jana, N. R. Paper-based microfluidic approach for surface-enhanced Raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration. ACS. Appl. Mater. Interfaces 2015, 7, 996–1003.

190

Li, Y. X.; Zhang, K.; Zhao, J. J.; Ji, J.; Ji, C.; Liu, B. H. A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules. Talanta 2016, 147, 493–500.

191

Gao, X. F.; Zheng, P.; Kasani, S.; Wu, S.; Yang, F.; Lewis, S.; Nayeem, S.; Engler-Chiurazzi, E. B.; Wigginton, J. G.; Simpkins, J. W. et al. Paper-based surface-enhanced Raman scattering lateral flow strip for detection of neuronspecific enolase in blood plasma. Anal. Chem. 2017, 89, 10104–10110.

192

Sánchez-Purrà, M.; Carré-Camps, M.; de Puig, H.; Bosch, I.; Gehrke, L.; Hamad-Schifferli, K. Surface-enhanced Raman spectroscopy-based sandwich immunoassays for multiplexed detection of Zika and Dengue viral biomarkers. ACS Infect. Dis. 2017, 3, 767–776.

193

Zhang, Y. S.; Chang, J. B.; Alvarez, M. M.; Trujillo-de Santiago, G.; Aleman, J.; Batzaya, B.; Krishnadoss, V.; Ramanujam, A. A.; Kazemzadeh-Narbat, M.; Chen, F. et al. Hybrid microscopy: Enabling inexpensive highperformance imaging through combined physical and optical magnifications. Sci. Rep. 2016, 6, 22691.

194

Zhang, Y. S.; Ribas, J.; Nadhman, A.; Aleman, J.; Selimović, S.; Lesher-Perez, S. C.; Wang, T.; Manoharan, V.; Shin, S. R.; Damilano, A. et al. A cost-effective fluorescence mini-microscope for biomedical applications. Lab Chip 2015, 15, 3661–3669.

195

Zhang, Y. S.; Trujillo-de Santiago, G.; Alvarez, M. M.; Schiff, S. J.; Boyden, E. S.; Khademhosseini, A. Expansion mini-microscopy: An enabling alternative in point-of-care diagnostics. Curr. Opin. Biomed. Eng. 2017, 1, 45–53.

196

McLeod, E.; Ozcan, A. Microscopy without lenses. Phys. Today 2017, 70, 50–56.

197

Ghosh, K. K.; Burns, L. D.; Cocker, E. D.; Nimmerjahn, A.; Ziv, Y.; El Gamal, A.; Schnitzer, M. J. Miniaturized integration of a fluorescence microscope. Nat. Methods 2011, 8, 871–878.

198

Singh, N. K.; Chacko, J. V.; Sreenivasan, V. K. A.; Nag, S.; Maiti, S. Ultracompact alignment-free single molecule fluorescence device with a foldable light path. J. Biomed. Opt. 2011, 16, 025004.

199

Cetin, A. E.; Coskun, A. F.; Galarreta, B. C.; Huang, M.; Herman, D.; Ozcan, A.; Altug, H. Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light-Sci. Appl. 2014, 3, e122.

200

Coskun, A. F.; Cetin, A. E.; Galarreta, B. C.; Alvarez, D. A.; Altug, H.; Ozcan, A. Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci. Rep. 2014, 4, 6789.

201

Ballard, Z. S.; Shir, D.; Bhardwaj, A.; Bazargan, S.; Sathianathan, S.; Ozcan, A. Computational sensing using low-cost and mobile plasmonic readers designed by machine learning. ACS Nano 2017, 11, 2266–2274.

202

Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Scanometric DNA array detection with nanoparticle probes. Science 2000, 289, 1757–1760.

203
Verigene® Warfarin Metabolism Nucleic Acid Test. Nanosphere Inc. https://www.accessdata.fda.gov/cdrh_docs/pdf7/k070804.pdf (accessed May 7, 2018).
204

Wei, Q. S.; Acuna, G.; Kim, S.; Vietz, C.; Tseng, D.; Chae, J.; Shir, D.; Luo, W.; Tinnefeld, P.; Ozcan, A. Plasmonics enhanced smartphone fluorescence microscopy. Sci. Rep. 2017, 7, 2124.

205

Ozcan, A. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip 2014, 14, 3187–3194.

206

Erickson, D.; O'Dell, D.; Jiang, L.; Oncescu, V.; Gumus, A.; Lee, S.; Mancuso, M.; Mehta, S. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics. Lab Chip 2014, 14, 3159–3164.

207

Contreras-Naranjo, J. C.; Wei, Q. S.; Ozcan, A. Mobile phone-based microscopy, sensing, and diagnostics. IEEE J. Sel. Top. Quant. 2016, 22, 7100414.

208

Breslauer, D. N.; Maamari, R. N.; Switz, N. A.; Lam, W. A.; Fletcher, D. A. Mobile phone based clinical microscopy for global health applications. PLoS One 2009, 4, e6320.

209

Smith, Z. J.; Chu, K. Q.; Espenson, A. R.; Rahimzadeh, M.; Gryshuk, A.; Molinaro, M.; Dwyre, D. M.; Lane, S.; Matthews, D.; Wachsmann-Hogiu, S. Cell-phone-based platform for biomedical device development and education applications. PLoS One 2011, 6, e17150.

210

Mudanyali, O.; Dimitrov, S.; Sikora, U.; Padmanabhan, S.; Navruz, I.; Ozcan, A. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip 2012, 12, 2678–2686.

211

Zhu, H. Y.; Yaglidere, O.; Su, T. W.; Tseng, D.; Ozcan, A. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip 2011, 11, 315–322.

212

Wei, Q. S.; Qi, H. F.; Luo, W.; Tseng, D.; Ki, S. J.; Wan, Z.; Göröcs, Z.; Bentolila, L. A.; Wu, T. T.; Sun, R. et al. Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano 2013, 7, 9147–9155.

213

Wei, Q. S.; Luo, W.; Chiang, S.; Kappel, T.; Mejia, C.; Tseng, D.; Chan, R. Y. L.; Yan, E.; Qi, H. F.; Shabbir, F. et al. Imaging and sizing of single DNA molecules on a mobile phone. ACS Nano 2014, 8, 12725–12733.

214

Liu, Z. G.; Zhang, Y. L.; Xu, S. J.; Zhang, H.; Tan, Y. X.; Ma, C. M.; Song, R.; Jiang, L. L.; Yi, C. Q. A 3D printed smartphone optosensing platform for point-of-need food safety inspection. Anal. Chim. Acta 2017, 966, 81–89.

215

Fu, Q. Q.; Wu, Z.; Xu, F. X.; Li, X. Q.; Yao, C. Z.; Xu, M.; Sheng, L. R.; Yu, S. T.; Tang, Y. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor. Lab Chip 2016, 16, 1927–1933.

216

Amirjani, A.; Fatmehsari, D. H. Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles. Talanta 2018, 176, 242–246.

217
Cellmic. http://www.cellmic.com/content (accessed May 7, 2018).
218

Wei, Q. S.; Nagi, R.; Sadeghi, K.; Feng, S.; Yan, E.; Ki, S. J.; Caire, R.; Tseng, D.; Ozcan, A. Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano 2014, 8, 1121–1129.

219

Preechaburana, P.; Gonzalez, M. C.; Suska, A.; Filippini, D. Surface plasmon resonance chemical sensing on cell phones. Angew. Chem., Int. Ed. 2012, 51, 11585–11588.

220

Liu, Y.; Liu, Q.; Chen, S. M.; Cheng, F.; Wang, H. Q.; Peng, W. Surface plasmon resonance biosensor based on smart phone platforms. Sci. Rep. 2015, 5, 12864.

221

Bremer, K.; Roth, B. Fibre optic surface plasmon resonance sensor system designed for smartphones. Opt. Express 2015, 23, 17179–17184.

222

Zhang, J. L.; Khan, I.; Zhang, Q. W.; Liu, X. H.; Dostalek, J.; Liedberg, B.; Wang, Y. Lipopolysaccharides detection on a grating-coupled surface plasmon resonance smartphone biosensor. Biosens. Bioelectron. 2018, 99, 312–317.

223

Wang, X. H.; Chang, T. W.; Lin, G. H.; Gartia, M. R.; Liu, G. L. Self-referenced smartphone-based nanoplasmonic imaging platform for colorimetric biochemical sensing. Anal. Chem. 2017, 89, 611–615.

224

Guner, H.; Ozgur, E.; Kokturk, G.; Celik, M.; Esen, E.; Topal, A. E.; Ayas, S.; Uludag, Y.; Elbuken, C.; Dana, A. A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sensor. Actuat. B: Chem. 2017, 239, 571–577.

225

Bandodkar, A. J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371.

226

Zhong, J. W.; Zhang, Y.; Zhong, Q. Z.; Hu, Q. Y.; Hu, B.; Wang, Z. L.; Zhou, J. Fiber-based generator for wearable electronics and mobile medication. ACS Nano 2014, 8, 6273–6280.

227

Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342.

228

Xu, S.; Zhang, Y. H.; Jia, L.; Mathewson, K. E.; Jang, K. I.; Kim, J.; Fu, H. R.; Huang, X.; Chava, P.; Wang, R. H. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 2014, 344, 70–74.

229

Feng, D.; Zhang, H.; Xu, S. Y.; Tian, L. M.; Song, N. F. Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics. Nanotechnology 2017, 28, 115703.

230

Wei, Z. Q.; Zhou, Z. K.; Li, Q. Y.; Xue, J. C.; Di Falco, A.; Yang, Z. J.; Zhou, J. H.; Wang, X. H. Flexible nanowire cluster as a wearable colorimetric humidity sensor. Small 2017, 13, 1700109.

231

Yan, H. G.; Low, T.; Zhu, W. J.; Wu, Y. Q.; Freitag, M.; Li, X. S.; Guinea, F.; Avouris, P.; Xia, F. N. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photonics 2013, 7, 394–399.

232

Yan, H. G.; Li, X. S.; Chandra, B.; Tulevski, G.; Wu, Y. Q.; Freitag, M.; Zhu, W. J.; Avouris, P.; Xia, F. N. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 2012, 7, 330–334.

233

Leem, J.; Wang, M. C.; Kang, P.; Nam, S. Mechanically self-assembled, three-dimensional graphene-gold hybrid nanostructures for advanced nanoplasmonic sensors. Nano Lett. 2015, 15, 7684–7690.

234

Hinman, S. S.; McKeating, K. S.; Cheng, Q. Plasmonic sensing with 3D printed optics. Anal. Chem. 2017, 89, 12626–12630.

235

Pandey, S.; Gupta, B.; Nahata, A. Terahertz plasmonic waveguides created via 3D printing. Opt. Express 2013, 21, 24422–24430.

Nano Research
Pages 5439-5473
Cite this article:
Yu T, Wei Q. Plasmonic molecular assays: Recent advances and applications for mobile health. Nano Research, 2018, 11(10): 5439-5473. https://doi.org/10.1007/s12274-018-2094-9
Part of a topical collection:

745

Views

35

Crossref

N/A

Web of Science

37

Scopus

3

CSCD

Altmetrics

Received: 16 March 2018
Revised: 08 May 2018
Accepted: 09 May 2018
Published: 05 June 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return