AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

MoS2/C/C nanofiber with double-layer carbon coating for high cycling stability and rate capability in lithium-ion batteries

Hao Wu1Chengyi Hou1Guozhen Shen3Tao Liu4Yuanlong Shao2( )Ru Xiao1( )Hongzhi Wang1
State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
ambridge Graphene Center, Department of Engineering, University of Cambridge, Cambridge, CB3 0FAUK
State Key Laboratory for Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
hemistry Department, University of Cambridge, Lensfield Road, Cambridge, CB2 1EWUK
Show Author Information

Graphical Abstract

Abstract

MoS2 has attracted a lot of interest in the field of lithium-ion storage as an anode material owing to its high capacity and two-dimensional (2D)-layer structure. However, its electrochemical properties, such as rate capability and cycling stability, are usually limited by its low conductivity, volume variation, and polysulfide dissolution during lithiation/delithiation cycling. Here, a designed two-layer carbon-coated MoS2/carbon nanofiber (MoS2/C/C fiber) hybrid electrode with a double-layer carbon coating was achieved by a facile hydrothermal and subsequent electrospinning method. The double carbon layer (inner amorphous carbon and outer carbon fiber) shells could efficiently increase the electron conductivity, prevent the aggregation of MoS2 flakes, and limit the volume change and polysulfide loss during long-term cycling. The as-prepared MoS2/C/C fiber electrode exhibited a high capacity of up to 1, 275 mAh/g at a current density of 0.2 A/g, 85.0% first cycle Coulombic efficiency, and significantly increased rate capability and cycling stability. These results demonstrate the potential applications of MoS2/C/C fiber hybrid material for energy storage and may open up a new avenue for improving electrode energy storage performance by fabricating hybrid nanofiber electrode materials with double-layer carbon coatings.

Electronic Supplementary Material

Download File(s)
12274_2018_2096_MOESM1_ESM.pdf (2 MB)

References

1

Shan, T. T.; Xin, S.; You, Y.; Cong, H. P.; Yu, S. H.; Manthiram, A. Combining nitrogen-doped graphene sheets and MoS2: A unique film-foam-film structure for enhanced lithium storage. Angew. Chem. 2016, 128, 12975-12980.

2

Zhang, S. P.; Chowdari, B. V. R.; Wen, Z. Y.; Jin, J.; Yang, J. H. Constructing highly oriented configuration by few- layer MoS2: Toward high-performance lithium-ion batteries and hydrogen evolution reactions. ACS Nano 2015, 9, 12464-12472.

3

Hu, L. R.; Ren, Y. M.; Yang, H. X.; Xu, Q. Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications. ACS Appl. Mater. Interfaces 2014, 6, 14644-14652.

4

Chang, K.; Chen, W. X. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electro-chemical performances for lithium ion batteries. ACS Nano 2011, 5, 4720-4728.

5

Xiao, J.; Wang, X. J.; Yang, X. Q.; Xun, S. D.; Liu, G.; Koech, P. K.; Liu, J.; Lemmon, J. P. Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium. Adv. Funct. Mater. 2011, 21, 2840-2846.

6

Liu, H.; Su, D. W.; Zhou, R. F.; Sun, B.; Wang, G. X.; Qiao, S. Z. Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2012, 2, 970-975.

7

Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116.

8

Wei, W.; Sun, K.; Hu, Y. H. An efficient counter electrode material for dye-sensitized solar cells—Flower-structured 1T metallic phase MoS2. J. Mater. Chem. A 2016, 4, 12398- 12401.

9

Xiao, J.; Choi, D.; Cosimbescu, L.; Koech, P.; Liu, J.; Lemmon, J. P. Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 2010, 22, 4522-4524.

10

Shao, Y. L.; Li, J. M.; Li, Y. G.; Wang, H. Z.; Zhang, Q. H.; Kaner, R. B. Flexible quasi-solid-state planar micro- supercapacitor based on cellular graphene films. Mater. Horiz. 2017, 4, 1145-1150.

11

Li, J. H.; Shao, Y. L.; Shi, Q. W.; Hou, C. Y.; Zhang, Q. H.; Li, Y. G.; Kaner, R. B.; Wang, H. Z. Calligraphy-inspired brush written foldable supercapacitors. Nano Energy 2017, 38, 428-437.

12

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.

13

Zhou, J. W.; Qin, J.; Zhang, X.; Shi, C. S.; Liu, E. Z.; Li, J. J.; Zhao, N. Q.; He, C. N. 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 2015, 9, 3837-3848.

14

Chang, K.; Chen, W. X. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 2011, 47, 4252-4254.

15

Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209-231.

16

Wang, T. Y.; Chen, S. Q.; Pang, H.; Xue, H. G.; Yu, Y. MoS2-based nanocomposites for electrochemical energy storage. Adv. Sci. 2017, 4, 1600289.

17

Chang, K.; Chen, W. X. Single-layer MoS2/graphene dispersed in amorphous carbon: Towards high electrochemical performances in rechargeable lithium ion batteries. J. Mater. Chem. 2011, 21, 17175-17184.

18

Xu, X.; Fan, Z. Y.; Yu, X. Y.; Ding, S. J.; Yu, D. M.; Lou, X. W. D. A nanosheets-on-channel architecture constructed from MoS2 and CMK-3 for high-capacity and long-cycle-life lithium storage. Adv. Energy Mate. 2014, 4, 1400902.

19

Shu, H. B.; Li, F.; Hu, C. L.; Liang, P.; Cao, D.; Chen, X. S. The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries. Nanoscale 2016, 8, 2918-2926.

20

Wu, H.; Lou, Z.; Yang, H.; Shen, G. Z. A flexible spiral- type supercapacitor based on ZnCo2O4 nanorod electrodes. Nanoscale 2015, 7, 1921-1926.

21

Wu, H.; Jiang, K.; Gu, S. S.; Yang, H.; Lou, Z.; Chen, D.; Shen, G. Z. Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Res. 2015, 8, 3544- 3552.

22

Zhu, C. B.; Mu, X. K.; van Aken, P. A.; Yu, Y.; Maier, J. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem., Int. Ed. 2014, 53, 2152-2156.

23

Zhang, C. F.; Wang, Z. Y.; Guo, Z. P.; Lou, X. W. Synthesis of MoS2-C one-dimensional nanostructures with improved lithium storage properties. ACS Appl. Mater. Interfaces 2012, 4, 3765-3768.

24

Li, Z. Y.; Ottmann, A.; Zhang, T.; Sun, Q.; Meyer, H. P.; Vaynzof, Y.; Xiang, J. H.; Klingeler, R. Preparation of hierarchical C@MoS2@C sandwiched hollow spheres for lithium ion batteries. J. Mater. Chem. A 2017, 5, 3987-3994.

25

Ma, L.; Ye, J. B.; Chen, W. X.; Chen, D. Y.; Lee, J. Y. Gemini surfactant assisted hydrothermal synthesis of nanotile-like MoS2/graphene hybrid with enhanced lithium storage performance. Nano Energy 2014, 10, 144-152.

26

Wang, Y.; Chen, B.; Seo, D. H.; Han, Z. J.; Wong, J. I.; Ostrikov, K.; Zhang, H.; Yang, H. Y. MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production. NPG Asia Mater. 2016, 8, e268.

27

Chen, B.; Liu, E. Z.; Cao, T. T.; He, F.; Shi, C. S.; He, C. N.; Ma, L. Y.; Li, Q. Y.; Li, J. J.; Zhao, N. Q. Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: Towards high-performance lithium-ion batteries anode materials. Nano Energy 2017, 33, 247-256.

28

Zhou, X. S.; Wan, L. J.; Guo, Y. G. Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. Nanoscale 2012, 4, 5868-5871.

29

Yu, X. Y.; Hu, H.; Wang, Y. W.; Chen, H. Y.; Lou, X. W. Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 7395-7398.

30

Shao, Y. L.; Wang, H. Z.; Zhang, Q. H.; Li, Y. G. Fabrication of large-area and high-crystallinity photoreduced graphene oxide films via reconstructed two-dimensional multilayer structures. NPG Asia Mater. 2014, 6, e119.

31

Shao, Y. L.; El-Kady, M. F.; Lin, C. W.; Zhu, G. Z.; Marsh, K. L.; Wang, J. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z.; Kaner, R. B. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater. 2016, 28, 6719-6726.

32

Shi, Q. W.; Li, J. H.; Hou, C. Y.; Shao, Y. L.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. A remote controllable fiber-type near-infrared light-responsive actuator. Chem. Commun. 2017, 53, 11118-11121.

33

Li, K. R.; Shao, Y. L.; Liu, S. Y.; Zhang, Q. H.; Wang, H. Z.; Li, Y. G.; Kaner, R. B. Aluminum-ion-intercalation supercapacitors with ultrahigh areal capacitance and highly enhanced cycling stability: Power supply for flexible electrochromic devices. Small 2017, 13, 1700380.

34

Zhu, C. B.; Mu, X. K.; van Aken, P. A.; Maier, J.; Yu, Y. Fast Li storage in MoS2-graphene-carbon nanotube nano-composites: Advantageous functional integration of 0D, 1D, and 2D nanostructures. Adv. Energy Mater. 2015, 5, 1401170.

35

Chen, B.; Lu, H. H.; Zhou, J. W.; Ye, C.; Shi, C. S.; Zhao, N. Q.; Qiao, S. Z. Porous MoS2/carbon spheres anchored on 3D interconnected multiwall carbon nanotube networks for ultrafast Na storage. Adv. Energy Mater. 2018, 201702909.

36

Gong, Y.; Yang, S.; Zhan, L.; Ma, L.; Vajtai, R.; Ajayan, P. M. A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv. Funct. Mater. 2014, 24, 125-130.

37

Ng, S. H.; Wang, J. Z.; Wexler, D.; Konstantinov, K.; Guo, Z. P.; Liu, H. K. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew. Chem., Int. Ed. 2006, 45, 6896-6899.

38

Wang, L.; Yu, Y.; Chen, P. C.; Zhang, D. W.; Chen, C. H. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J. Power Sources 2008, 183, 717-723.

39

Toprakci, O.; Ji, L. W.; Lin, Z.; Toprakci, H. A. K.; Zhang, X. W. Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries. J. Power Sources 2011, 196, 7692-7699.

40

Xiong, X. Q.; Lou, W.; Hu, X. L.; Chen, C. J.; Qie, L.; Hou, D. F.; Huang, Y. H. Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high- performance sodium-ion batteries. Sci. Rep. 2015, 5, 9254.

41

He, P. G.; Zhao, K. R.; Huang, B. Y.; Zhang, B. Q.; Huang, Q.; Chen, T. F.; Zhang, Q. Q. Mechanically robust and size-controlled MoS2/graphene hybrid aerogels as high- performance anodes for lithium-ion batteries. J. Mater. Sci. 2018, 53, 4482-4493.

42

Chen, C.; Xie, X. Q.; Anasori, B.; Sarycheva, A.; Makaryan, T.; Zhao, M. Q.; Urbankowski, P.; Miao, L.; Jiang, J. J.; Gogotsi, Y. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. 2018, 130, 1864-1868.

43

Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.

44

Hwang, H.; Kim, H.; Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826-4830.

45

Wang, J.; Liu, J. L.; Chao, D. L.; Yan, J. X.; Lin, J. Y.; Shen, Z. X. Self-assembly of honeycomb-like MoS2 nano-architectures anchored into graphene foam for enhanced lithium-ion storage. Adv. Mater. 2014, 26, 7162-7169.

46

Xiong, F. Y.; Cai, Z. Y.; Qu, L. B.; Zhang, P. F.; Yuan, Z. F.; Asare, O. K.; Xu, W. W.; Lin, C.; Mai, L. Q. Three-dimensional crumpled reduced graphene oxide/MoS2 nanoflowers: A stable anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 12625-12630.

47

Shi, Y. M.; Wang, Y.; Wong, J. I.; Tan, A. Y. S.; Hsu, C. L.; Li, L. J.; Lu, Y. C.; Yang, H. Y. Self-assembly of hierarchical MoSx/CNT nanocomposites (2 < x < 3): Towards high performance anode materials for lithium ion batteries. Sci. Rep. 2013, 3, 2169.

48

Yang, L. C.; Wang, S. N.; Mao, J. J.; Deng, J. W.; Gao, Q. S.; Tang, Y.; Schmidt, O. G. Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater. 2013, 8, 1180-1184.

49

Armstrong, A. R.; Lyness, C.; Panchmatia, P. M.; Islam, M. S.; Bruce, P. G. The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1-xO2. Nat. Mater. 2011, 10, 223-229.

50

Wu, S. P.; Xu, R.; Lu, M. J.; Ge, R. Y.; Iocozzia, J.; Han, C. P.; Jiang, B. B.; Lin, Z. Q. Graphene-containing nanomaterials for lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1500400.

Nano Research
Pages 5866-5878
Cite this article:
Wu H, Hou C, Shen G, et al. MoS2/C/C nanofiber with double-layer carbon coating for high cycling stability and rate capability in lithium-ion batteries. Nano Research, 2018, 11(11): 5866-5878. https://doi.org/10.1007/s12274-018-2096-7

750

Views

19

Downloads

59

Crossref

N/A

Web of Science

58

Scopus

6

CSCD

Altmetrics

Received: 19 February 2018
Revised: 17 April 2018
Accepted: 12 May 2018
Published: 31 May 2018
© The Author(s) 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return