AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Raman investigation of air-stable silicene nanosheets on an inert graphite surface

Paola Castrucci1( )Filippo Fabbri2( )Tiziano Delise1Manuela Scarselli1Matteo Salvato1Sara Pascale3Roberto Francini4Isabelle Berbezier5Christoph Lechner6Fatme Jardali7Holger Vach7( )Maurizio De Crescenzi1
Dipartimento di FisicaUniversità di Roma "Tor Vergata"Roma00133Italy
Center for Nanotechnology Innovation c/o NESTIstituto Italiano di TecnologiaPisa56127Italy
Consorzio di Ricerca Hypatiac/o Italian Space AgencyRoma00133Italy
Dipartimento di Ingegneria IndustrialeUniversità di Roma "Tor Vergata"Roma00133Italy
CNRSAix-Marseille UniversitéIM2NPUMR 7334Marseille13397France
EDF R & DDepartment Materials and Mechanics of Components (MMC)Moret-sur-Loing77818France
CNRS-LPICMEcole PolytechniqueUniversité Paris-SaclayPalaiseau91128France
Show Author Information

Graphical Abstract

Abstract

The fascinating properties of two dimensional (2D) crystals have gained increasing interest for many applications. The synthesis of a 2D silicon structure, namely silicene, is attracting great interest for possible development of next generation electronic devices. The main difficulty in working with silicene remains its strong tendency to oxidation when exposed to air as a consequence of its relatively highly buckled structure. In this work, we univocally identify the Raman mode of air-stable low-buckled silicene nanosheets synthesized on highly oriented pyrolytic graphite (HOPG) located at 542.5 cm-1. The main focus of this work is Raman spectroscopy and mapping analyses in combination with ab initio calculations. Scanning tunneling microscopy images reveal the presence of a patchwork of Si three-dimensional (3D) clusters and contiguous Si areas presenting a honeycomb atomic arrangement, rotated by 30° with respect to the HOPG substrate underneath, with a lattice parameter of 0.41 ± 0.02 nm and a buckling of the Si atoms of 0.05 nm. Raman analysis supports the co-existence of 3D silicon clusters and 2D silicene. The Raman shift of low-buckled silicene on an inert substrate has not been reported so far and it is completely different from the one calculated for free-standing silicene and the ones measured for silicene grown on Ag(111) surfaces. Our experimental results are perfectly reproduced by our ab initio calculations of deposited silicene nanosheets. This leads us to conclude that the precise value of the observed Raman shift crucially depends on the strain between the silicene and the HOPG substrate.

Electronic Supplementary Material

Download File(s)
12274_2018_2097_MOESM1_ESM.pdf (3.8 MB)

References

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

2

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438, 197-200.

3

Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Room-temperature quantum Hall effect in graphene. Science 2007, 315, 1379.

4

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.

5

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.

6

Scheier, P.; Marsen, B.; Lonfat, M.; Schneider, W. D.; Sattler, K. Growth of silicon nanostructures on graphite. Surf. Sci. 2000, 458, 113-122.

7

Mélinon, P.; Kéghélian, P.; Prével, B.; Perez, A.; Guiraud, G.; LeBrusq, J.; Lermé, J.; Pellarin, M.; Broyer, M. Nanostructured silicon films obtained by neutral cluster depositions. J. Chem. Phys. 1997, 107, 10278.

8

Katırcıoğlu, Ş.; Erkoç, Ş. Structural and electronic properties of bare and hydrogenated silicon clusters. Phys. E 2001, 9, 314-320.

9

Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

10

Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

11

Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227-231.

12

Scalise, E.; Houssa, M.; Pourtois, G.; van den Broek, B.; Afanas'ev, V.; Stesmans, A. Vibrational properties of silicene and germanene. Nano Res. 2013, 6, 19-28.

13

Yan, J. A.; Stein, R.; Schaefer, D. M.; Wang, X. Q.; Chou, M. Y. Electron-phonon coupling in two-dimensional silicene and germanene. Phys. Rev. B 2013, 88, 121403(R).

14

Zhuang, J. C.; Xu, X.; Du, Y.; Wu, K. H.; Chen, L.; Hao, W. C.; Wang, J. O.; Yeoh, W. K.; Wang, X. L.; Dou, S. X. Investigation of electron-phonon coupling in epitaxial silicene by in situ Raman spectroscopy. Phys. Rev. B 2015, 91, 161409(R).

15

Solonenko, D.; Gordan, O. D.; Le Lay, G.; Sahin, H.; Cahangirov, S.; Zahn, D. R. T.; Vogt, P. 2D vibrational properties of epitaxial silicene on Ag(111). 2D Mater. 2016, 4, 015008.

16

Scalise, E.; Cinquanta, E.; Houssa, M.; van den Broek, B.; Chiappe, D.; Grazianetti, C.; Pourtois, G.; Ealet, B.; Molle, A.; Fanciulli, M. et al. Vibrational properties of epitaxial silicene layers on (111) Ag. Appl. Surf. Sci. 2014, 291, 113-117.

17

De Crescenzi, M.; Berbezier, I.; Scarselli, M.; Castrucci, P.; Abbarchi, M.; Ronda, A.; Jardali, F.; Park, J.; Vach, H. Formation of silicene nanosheets on graphite. ACS Nano 2016, 10, 11163-11171.

18

Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 2014, 26, 2096-2101.

19

Dovesi, R.; Orlando, R.; Civalleri, B.; Roetti, C.; Saunders, V. R.; Zicovich-Wilson, C. M. CRYSTAL: A computational tool for the ab initio study of the electronic properties of crystals. Z. Kristallogr. 2005, 220, 571-573.

20

Dovesi, R.; Saunders, V. R.; Roetti, C.; Orlando, R.; Zicovich-Wilson, C. M.; Pascale, F.; , Civalleri, B.; Doll, K.; Harrison, N. M.; Bush, J. J. et al. CRYSTAL09 User's Manual. University of Torino: Torino, 2009.

21

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

22

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.

23

Pascale, F.; Zicovich-Wilson, C. M.; López Gejo, F.; Civalleri, B.; Orlando, R.; Dovesi, R. The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. J. Comput. Chem. 2004, 25, 888-897.

24

Zicovich-Wilson, C. M.; Pascale, F.; Roetti, C.; Saunders, V. R.; Orlando, R.; Dovesi, R. Calculation of the vibration frequencies of α-quartz: The effect of Hamiltonian and basis set. J. Comput. Chem. 2004, 25, 1873-1881.

25

Ferro, Y.; Thomas, C.; Angot, T.; Génésio, T.; Allouche, A. Theoretical and experimental characterization of damaged graphite surfaces. J. Nucl. Mater. 2007, 363-365, 1206-1210.

26

Büttner, M.; Choudhury, P.; Johnson, J. K.; Yates, J. T., Jr. Vacancy clusters as entry ports for cesium intercalation in graphite. Carbon 2011, 49, 3937-3952.

27

Peng, W. B.; Xu, T.; Diener, P.; Biadala, L.; Berthe, M.; Pi, X. D.; Borensztein, Y.; Curcella, A.; Bernard, R.; Prévot, G. et al. Resolving the controversial existence of silicene and germanene nanosheets grown on graphite. ACS Nano 2018, 12, 4754-4760.

28

Cai, Y. M.; Chuu, C. P.; Wei, C. M.; Chou, M. Y. Stability and electronic properties of two-dimensional silicene and germanene on graphene. Phys. Rev. B 2013, 88, 245408.

29

Chen, X. B.; Tian, F. Y.; Persson, C.; Duan, W. H.; Chen, N. X. Interlayer interactions in graphites. Sci. Rep. 2013, 3, 3046.

30

Persichetti, L.; Jardali, F.; Vach, H.; Sgarlata, A.; Berbezier, I.; De Crescenzi, M.; Balzarotti, A. van der Waals heteroepitaxy of germanene islands on graphite. J. Phys. Chem. Lett. 2016, 7, 3246-3251.

31

Zhang, L.; Bampoulis, P.; Rudenko, A. N.; Yao, Q.; van Houselt, A.; Poelsema, B.; Katsnelson, M. I.; Zandvliet, H. J. W. Structural and electronic properties of germanene on MoS2. Phys. Rev. Lett. 2016, 116, 256804.

32

van Bremen, R.; Yao, Q. R.; Banerjee, S.; Cakir, D.; Oncel, N.; Zandvliet, H. J. W. Intercalation of Si between MoS2 layers. Beilstein J. Nanotechnol. 2017, 8, 1952-1960.

33

Nakashima, S.; Harima, H. Raman investigation of SiC polytypes. Phys. Stat. Sol. (a) 1997, 162, 39-64.

34

Borowicz, P.; Latek, M.; Rzodkiewicz, W.; Łaszcz, A.; Czerwinski, A.; Ratajczak, J. Deep-ultraviolet Raman investigation of silicon oxide: Thin film on silicon substrate versus bulk material. Adv. Nat. Sci. : Nanosci. Nanotechnol. 2012, 3, 045003.

35

Parker, J. H.; Feldman, D. W.; Ashkin, M. Raman scattering by silicon and germanium. Phys. Rev. 1967, 155, 712-714.

36

Faraci, G.; Gibilisco, S.; Pennisi, A. R. Quantum confinement and thermal effects on the Raman spectra of Si nanocrystals. Phys. Rev. B 2009, 80, 193410.

37

Temple, P. A.; Hathaway, C. E. Multiphonon Raman spectrum of silicon. Phys. Rev. B 1973, 7, 3685-3697.

38

De Padova, P.; Ottaviani, C.; Quaresima, C.; Olivieri, B.; Imperatori, P.; Salomon, E.; Angot, T.; Quaglian, L.; Romano, C.; Vona, A. et al. 24 h stability of thick multilayer silicene in air. 2D Mater. 2014, 1, 021003.

39

Himpsel, F. J.; McFeely, F. R.; Taleb-Ibrahimi, A.; Yarmoff, J. A.; Hollinger, G. Microscopic structure of the SiO2/Si interface. Phys. Rev. B 1988, 38, 6084-6096.

40

Du, Y.; Zhuang, J. C.; Wang, J. O.; Li, Z.; Liu, H. S.; Zhao, J. J.; Xu, X.; Feng, H. F.; Chen, L.; Wu, K. H. et al. Quasi-freestanding epitaxial silicene on Ag(111) by oxygen intercalation. Sci. Adv. 2016, 2, e1600067.

41

Jarrold, M. F.; Ray, U.; Creegan, K. M. Chemistry of semiconductor clusters: Large silicon clusters are much less reactive towards oxygen than the bulk. J. Chem. Phys. 1990, 93, 224-229.

Nano Research
Pages 5879-5889
Cite this article:
Castrucci P, Fabbri F, Delise T, et al. Raman investigation of air-stable silicene nanosheets on an inert graphite surface. Nano Research, 2018, 11(11): 5879-5889. https://doi.org/10.1007/s12274-018-2097-6

728

Views

22

Crossref

N/A

Web of Science

22

Scopus

1

CSCD

Altmetrics

Received: 09 February 2018
Revised: 14 May 2018
Accepted: 15 May 2018
Published: 05 June 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return