Graphical Abstract

The catalytic performance of metal nanoparticles is often affected by surface oxidation levels. Instead of post-synthesis oxidation/reduction, we propose an efficient method to modulate the oxidation levels by tuning the composition of bimetallic nanoparticles. Here we report a series of Pt–Re bimetallic nanoparticles synthesized via a facile thermal co-reduction process, with a uniform size of approximately 3 nm. The investigation of the growth of the Pt–Re nanoparticles suggests that the Re atoms were enriched on the surface, as confirmed by X-ray photoelectron spectroscopy. Furthermore, X-ray absorption spectroscopy showed that metallic Re was decreased and high-valency ReOx species were increased in particles with higher Re/Pt ratios. In the etherification of allylic alcohols catalyzed by Pt–Re nanoparticles of different compositions under ambient conditions, particles with higher Re/Pt ratios exhibited significantly better performances. The highest mass activity of Pt–Re bimetallic nanoparticles (127 μmol·g-1·s-1) was more than forty times that of the industrial catalyst CH3ReO3 (3 μmol·g-1·s-1). The catalytically active sites were associated with ReOx and could be tuned by adjusting the Pt ratio.
Chng, L. L.; Erathodiyil, N.; Ying, J. Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res. 2013, 46, 1825-1837.
Schlögl, R.; Hamid, S. B. A. Nanocatalysis: Mature science revisited or something really new? Angew. Chem., Int. Ed. 2004, 43, 1628-1637.
Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Tuning selectivity in catalysis by controlling particle shape. Nat. Mater. 2009, 8, 132-138.
Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30-46.
Zahmakıran, M.; Özkar, S. Metal nanoparticles in liquid phase catalysis; from recent advances to future goals. Nanoscale 2011, 3, 3462-3481.
Wang, S. -B.; Zhu, W.; Ke, J.; Lin, M.; Zhang, Y. -W. Pd-Rh nanocrystals with tunable morphologies and compositions as efficient catalysts toward Suzuki cross-coupling reactions. ACS Catal. 2014, 4, 2298-2306.
Guo, H. F.; Yan, X. L.; Zhi, Y.; Li, Z. W.; Wu, C.; Zhao, C. L.; Wang, J.; Yu, Z. X.; Ding, Y.; He, W. et al. Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Res. 2015, 8, 1365-1372.
Dai, L. -X.; Zhu, W.; Lin, M.; Zhang, Z. -P.; Gun, J.; Wang, Y. -H.; Zhang, Y. -W. Self-supported composites of thin Pt-Sn crosslinked nanowires for the highly chemoselective hydrogenation of cinnamaldehyde under ambient conditions. Inorg. Chem. Front. 2015, 2, 949-956.
Zhang, Z. -P.; Zhu, W.; Yan, C. -H.; Zhang, Y. -W. Selective synthesis of rhodium-based nanoframe catalysts by chemical etching of 3d metals. Chem. Commun. 2015, 51, 3997-4000.
Yu, J. -W.; Li, W. -Z.; Zhang, T.; Ma, D.; Zhang, Y. -W. Ruthenium nanoclusters dispersed on titania nanorods and nanoparticles as high-performance catalysts for aqueousphase Fischer-Tropsch synthesis. Catal. Sci. Technol. 2016, 6, 8355-8363.
Zhang, Z. -P.; Wang, X. -Y.; Yuan, K.; Zhu, W.; Zhang, T.; Wang, Y. -H.; Ke, J.; Zheng, X. -Y.; Yan, C. -H.; Zhang, Y. -W. Free-standing iridium and rhodium-based hierarchically-coiled ultrathin nanosheets for highly selective reduction of nitrobenzene to azoxybenzene under ambient conditions. Nanoscale 2016, 8, 15744-15752.
Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Recent advances in the transition metal-catalyzed twofold oxidative C-H bond activation strategy for C-C and C-N bond formation. Chem. Soc. Rev. 2011, 40, 5068-5083.
Li, B. J.; Shi, Z. J. From C(sp2)-H to C(sp3)-H: Systematic studies on transition metal-catalyzed oxidative C-C formation. Chem. Soc. Rev. 2012, 41, 5588-5598.
Rouquet, G.; Chatani, N. Catalytic functionalization of C(sp2)-H and C(sp3)-H bonds by using bidentate directing groups. Angew. Chem., Int. Ed. 2013, 52, 11726-11743.
Li, Z. -X.; Xue, W.; Guan, B. -T.; Shi, F. -B.; Shi, Z. -J.; Jiang, H.; Yan, C. -H. A conceptual translation of homogeneous catalysis into heterogeneous catalysis: Homogeneous-like heterogeneous gold nanoparticle catalyst induced by ceria supporter. Nanoscale 2013, 5, 1213-1220.
Hartwig, J. F. Evolution of C-H bond functionalization from methane to methodology. J. Am. Chem. Soc. 2016, 138, 2-24.
Kim, M.; Lee, S.; Kim, K.; Shin, D.; Kim, H.; Song, H. A highly Lewis-acidic Pd(Ⅳ) surface on Pd@SiO2 nanocatalysts for hydroalkoxylation reactions. Chem. Commun. 2014, 50, 14938-14941.
Lin, M.; Kang, L. -Q.; Gu, J.; Dai, L. -X.; Tang, S. -B.; Zhang, T.; Wang, Y. -H.; Li, L. -D.; Zheng, X. -Y.; Zhu, W. et al. Heterogeneous synergistic catalysis by Ru-RuOx nanoparticles for selenium-selenium bond activation. Nano Res. 2017, 10, 922-932.
Lin, M.; Dai, L. -X.; Gu, J.; Kang, L. -Q.; Wang, Y. -H.; Si, R.; Zhao, Z. -Q.; Liu, W. -C.; Fu, X.; Sun, L. -D. et al. Moderate oxidation levels of Ru nanoparticles enhance molecular oxygen activation for cross-dehydrogenative-coupling reactions via single electron transfer. RSC Adv. 2017, 7, 33078-33085.
Kim, K.; Jung, Y.; Lee, S.; Kim, M.; Shin, D.; Byun, H.; Cho, S. J.; Song, H.; Kim, H. Directed C-H activation and tandem cross-coupling reactions using palladium nanocatalysts with controlled oxidation. Angew. Chem., Int. Ed. 2017, 129, 7056-7060.
Friedrich, M.; Armbrüster, M. Crystallite size controls the crystal structure of Cu60Pd40 nanoparticles. Chem. Mater. 2009, 21, 5886-5891.
Chen, K. Y.; Koso, S.; Kubota, T.; Nakagawa, Y.; Tomishige, K. Chemoselective hydrogenolysis of tetrahydropyran-2-methanol to 1, 6-hexanediol over rhenium-modified carbon-supported rhodium catalysts. ChemCatChem 2010, 2, 547-555.
Shinmi, Y.; Koso, S.; Kubota, T.; Nakagawa, Y.; Tomishige, K. Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water. Appl. Catal. B: Environ. 2010, 94, 318-326.
Chen, K. Y.; Mori, K.; Watanabe, H.; Nakagawa, Y.; Tomishige, K. C-O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts. J. Catal. 2012, 294, 171-183.
Tazawa, S.; Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. Deoxydehydration with molecular hydrogen over ceria-supported rhenium catalyst with gold promoter. ACS Catal. 2016, 6, 6393-6397.
Morrill, C.; Beutner, G. L.; Grubbs, R. H. Rhenium-catalyzed 1, 3-isomerization of allylic alcohols: Scope and chirality transfer. J. Org. Chem. 2006, 71, 7813-7825.
Wan, X. L.; Hu, J. D.; Xu, D. Y.; Shang, Y.; Zhen, Y. X.; Hu, C. C.; Xiao, F.; He, Y. -P.; Lai, Y. S.; Xie, W. Q. A Re2O7 catalyzed cycloetherification of monoallylic diols. Tetrahedron Lett. 2017, 58, 1090-1093.
Yang, H. W.; Fang, L.; Zhang, M.; Zhu, C. J. An efficient molybdenum(Ⅵ)-catalyzed direct substitution of allylic alcohols with nitrogen, oxygen, and carbon nucleophiles. Eur. J. Org. Chem. 2009, 2009, 666-672.
Ciftci, A.; Eren, S.; Ligthart, D. A. J. M.; Hensen, E. J. M. Platinum-rhenium synergy on reducible oxide supports in aqueous-phase glycerol reforming. ChemCatChem 2014, 6, 1260-1269.
Ciftci, A.; Ligthart, D. A. J. M.; Hensen, E. J. M. Aqueous phase reforming of glycerol over Re-promoted Pt and Rh catalysts. Green Chem. 2014, 16, 853-863.
Ciftci, A.; Ligthart, D. A. J. M.; Hensen, E. J. M. Influence of Pt particle size and Re addition by catalytic reduction on aqueous phase reforming of glycerol for carbon-supported Pt(Re) catalysts. Appl. Catal. B: Environ. 2015, 174-175, 126-135.
Yu, Y. S.; Yang, W. W.; Sun, X. L.; Zhu, W. L.; Li, X. -Z.; Sellmyer, D. J.; Sun, S. H. Monodisperse MPt (M = Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts. Nano Lett. 2014, 14, 2778-2782.
Yi, J.; Miller, J. T.; Zemlyanov, D. Y.; Zhang, R. H.; Dietrich, P. J.; Ribeiro, F. H.; Suslov, S.; Abu-Omar, M. M. A reusable unsupported rhenium nanocrystalline catalyst for acceptorless dehydrogenation of alcohols through γ-C-H activation. Angew. Chem., Int. Ed. 2014, 53, 833-836.
Bedia, J.; Calvo, L.; Lemus, J.; Quintanilla, A.; Casas, J. A.; Mohedano, A. F.; Zazo, J. A.; Rodriguez, J. J.; Gilarranz, M. A. Colloidal and microemulsion synthesis of rhenium nanoparticles in aqueous medium. Colloids Surf. A: Physicochem. Eng. Aspects 2015, 469, 202-210.
Ayvalı, T.; Lecante, P.; Fazzini, P. -F.; Gillet, A.; Philippot, K.; Chaudret, B. Facile synthesis of ultra-small rhenium nanoparticles. Chem. Commun. 2014, 50, 10809-10811.
Duke, A. S.; Xie, K. M.; Brandt, A. J.; Maddumapatabandi, T. D.; Ammal, S. C.; Heyden, A.; Monnier, J. R.; Chen, D. A. Understanding active sites in the water-gas shift reaction for Pt-Re catalysts on titania. ACS Catal. 2017, 7, 2597-2606.
Duke, A. S.; Galhenage, R. P.; Tenney, S. A.; Sutter, P.; Chen, D. A. In situ studies of carbon monoxide oxidation on platinum and platinum-rhenium alloy surfaces. J. Phys. Chem. C 2015, 119, 381-391.
Ramstad, A.; Strisland, F.; Raaen, S.; Worren, T.; Borg, A.; Berg, C. Growth and alloy formation studied by photoelectron spectroscopy and STM. Surf. Sci. 1999, 425, 57-67.
Komiyama, M.; Ogino, Y.; Akai, Y.; Goto, M. X-ray photoelectron spectroscopic studies of unsupported and supported rhenium using argon-ion bombardment. J. Chem. Soc., Faraday Trans. 2 1983, 79, 1719-1728.
Tysoe, W. T.; Zaera, F.; Somorjai, G. A. An XPS study of the oxidation and reduction of the rhenium-platinum system under atmospheric conditions. Surf. Sci. 1988, 200, 1-14.
Greiner, M. T.; Rocha, T. C. R.; Johnson, B.; Klyushin, A.; Knop-Gericke, A.; Schlögl, R. Z. The oxidation of rhenium and identification of rhenium oxides during catalytic partial oxidation of ethylene: An in-situ XPS study. Z. Phys. Chem. 2014, 228, 521-541.
Lloyd-Jones, G. C. Mechanistic aspects of transition metal catalysed 1, 6-diene and 1, 6-enyne cycloisomerisation reactions. Org. Biomol. Chem. 2003, 1, 215-236.
Amada, Y.; Watanabe, H.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. Structure of ReOx clusters attached on the Ir metal surface in Ir-ReOx/SiO2 for the hydrogenolysis reaction. J. Phys. Chem. C 2012, 116, 23503-23514.
Wei, Z. H.; Karim, A. M.; Li, Y.; King, D. L.; Wang, Y. Elucidation of the roles of Re in steam reforming of glycerol over Pt-Re/C catalysts. J. Catal. 2015, 322, 49-59.
Zhang, L.; Karim, A. M.; Engelhard, M. H.; Wei, Z. H.; King, D. L.; Wang, Y. Correlation of Pt-Re surface properties with reaction pathways for the aqueous-phase reforming of glycerol. J. Catal. 2012, 287, 37-43.
Falcone, D. D.; Hack, J. H.; Klyushin, A. Y.; Knop-Gericke, A.; Schlögl, R.; Davis, R. J. Evidence for the bifunctional nature of Pt-Re catalysts for selective glycerol hydrogenolysis. ACS Catal. 2015, 5, 5679-5695.
Chia, M.; Pagán-Torres, Y. J.; Hibbitts, D.; Tan, Q. H.; Pham, H. N.; Datye, A. K.; Neurock, M.; Davis, R. J.; Dumesic, J. A. Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts. J. Am. Chem. Soc. 2011, 133, 12675-12689.
Chia, M.; O'Neill, B. J.; Alamillo, R.; Dietrich, P. J.; Ribeiro, F. H.; Miller, J. T.; Dumesic, J. A. Bimetallic RhRe/C catalysts for the production of biomass-derived chemicals. J. Catal. 2013, 308, 226-236.
Ciftci, A.; Ligthart, D. A. J. M.; Sen, A. O.; van Hoof, A. J. F.; Friedrich, H.; Hensen, E. J. M. Pt-Re synergy in aqueousphase reforming of glycerol and the water-gas shift reaction. J. Catal. 2014, 311, 88-101.
Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer: Eden Prairie, MN, USA, 1992.