AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Large-size niobium disulfide nanoflakes down to bilayers grown by sulfurization

Zhen Li1Wencao Yang1Yaroslav Losovyj2( )Jun Chen2Enzhi Xu1Haoming Liu1Madilynn Werbianskyj1Herbert A. Fertig1Xingchen Ye2Shixiong Zhang1( )
Department of PhysicsIndiana UniversityBloomingtonIndiana47405USA
Department of ChemistryIndiana UniversityBloomingtonIndiana47405USA
Show Author Information

Graphical Abstract

Abstract

Atomically thin layers of group VB transition metal dichalcogenides (TMDs) provide a unique platform for studying two-dimensional (2D) superconductivity and charge density waves. Thus far, the bottom-up synthesis of these 2D TMDs has often involved precursors that are corrosive or toxic, and their lateral sizes are typically only a few micrometers. In this paper, we report the growth of NbS2 nanoflakes with a thickness down to bilayers and a lateral dimension up to tens of micrometers without using harsh chemical species. NbS2 nanoflakes either standing or lying with respect to the sapphire substrate were obtained by sulfurization of niobium oxide films that were prepared via pulsed laser deposition. Standing nanoflakes are considered to grow epitaxially on the sapphire substrate according to their ordered orientation, while lying nanoflakes with random orientations were grown directly on top of the niobium oxide films. The Raman spectra of the 3R-phase exhibit strong dependence on the layer thickness, where the A1 mode softens as the layer number decreases. In contrast to the stable bulk NbS2, the ultra-thin nanoflakes were oxidized on their top surfaces after prolonged exposure to air, as revealed by X-ray photoelectron spectroscopy. Our work explores an important route to synthesize large-size NbS2 nanoflakes and studies the oxidation process, which is a critical factor to consider if practical applications should be realized in the future.

Electronic Supplementary Material

Download File(s)
12274_2018_2111_MOESM1_ESM.pdf (1 MB)

References

1

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

2

Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898-2926.

3

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.

4

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768-779.

5

Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 1102-1120.

6

Ganatra, R.; Zhang, Q. Few-layer MoS2: A promising layered semiconductor. ACS Nano 2014, 8, 4074-4099.

7

Lembke, D.; Bertolazzi, S.; Kis, A. Single-layer MoS2 electronics. Acc. Chem. Res. 2015, 48, 100-110.

8

Schwierz, F.; Pezoldt, J.; Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7, 8261-8283.

9

Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509-11539.

10

Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543-1560.

11

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.

12

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

13

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

14

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.

15

Tsai, M. L.; Su, S. H.; Chang, J. K.; Tsai, D. S.; Chen, C. H.; Wu, C. I.; Li, L. J.; Chen, L. J.; He, J. H. Monolayer MoS2 heterojunction solar cells. ACS Nano 2014, 8, 8317-8322.

16

Reynolds, K. J.; Barker, J. A.; Greenham, N. C.; Friend, R. H.; Frey, G. L. Inorganic solution-processed hole-injecting and electron-blocking layers in polymer light-emitting diodes. J. Appl. Phys. 2002, 92, 7556-7563.

17

Frey, G. L.; Reynolds, K. J.; Friend, R. H.; Cohen, H.; Feldman, Y. Solution-processed anodes from layer-structure materials for high-efficiency polymer light-emitting diodes. J. Am. Chem. Soc. 2003, 125, 5998-6007.

18

Wilson, J. A.; Di Salvo, F. J.; Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 1975, 24, 117-201.

19

Naito, M.; Tanaka, S. Electrical transport properties in 2H-NbS2, -NbSe2, -TaS2 and -TaSe2. J. Phys. Soc. Jpn. 1982, 51, 219-227.

20

Sipos, B.; Kusmartseva, A. F.; Akrap, A.; Berger, H.; Forró, L.; Tutiš, E. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 2008, 7, 960-965.

21

Guillamón, I.; Suderow, H.; Vieira, S.; Cario, L.; Diener, P.; Rodière, P. Superconducting density of states and vortex cores of 2H-NbS2. Phys. Rev. Lett. 2008, 101, 166407.

22

Divigalpitiya, W. M. R.; Frindt, R. F.; Morrison, S. R. Effect of humidity on spread NbS2 films. J. Phys. D: Appl. Phys. 1990, 23, 966.

23

Geantet, C.; Afonso, J.; Breysse, M.; Allali, N.; Danot, M. Niobium sulfides as catalysts for hydrotreating reactions. Catal. Today 1996, 28, 23-30.

24

Kumagai, N.; Tanno, K. Kinetic and structural characteristics of 3R-niobium disulfide as a positive material for secondary lithium batteries. Electrochim. Acta 1991, 36, 935-941.

25

Liao, Y. H.; Park, K. S.; Singh, P.; Li, W. S.; Goodenough, J. B. Reinvestigation of the electrochemical lithium intercalation in 2H- and 3R-NbS2. J. Power Sources 2014, 245, 27-32.

26

Xi, X. X.; Zhao, L.; Wang, Z. F.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 2015, 10, 765-769.

27

Yu, Y. J.; Yang, F. Y.; Lu, X. F.; Yan, Y. J.; Cho, Y. H.; Ma, L. G.; Niu, X. H.; Kim, S.; Son, Y. W.; Feng, D. L. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 2015, 10, 270-276.

28

Samnakay, R.; Wickramaratne, D.; Pope, T. R.; Lake, R. K.; Salguero, T. T.; Balandin, A. A. Zone-folded phonons and the commensurate-incommensurate charge-density-wave transition in 1T-TaSe2 thin films. Nano Lett. 2015, 15, 2965-2973.

29

Navarro-Moratalla, E.; Island, J. O.; Mañas-Valero, S.; Pinilla-Cienfuegos, E.; Castellanos-Gomez, A.; Quereda, J.; Rubio-Bollinger, G.; Chirolli, L.; Silva-Guillén, J. A.; Agraït, N. et al. Enhanced superconductivity in atomically thin TaS2. Nat. Commun. 2016, 7, 11043.

30

Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320-2325.

31

Lee, Y. H.; Yu, L. L.; Wang, H.; Fang, W. J.; Ling, X.; Shi, Y. M.; Lin, C. T.; Huang, J. K.; Chang, M. T.; Chang, C. S. et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 2013, 13, 1852-1857.

32

Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754-759.

33

Ji, Q. Q.; Zhang, Y. F.; Gao, T.; Zhang, Y.; Ma, D. L.; Liu, M. X.; Chen, Y. B.; Qiao, X. F.; Tan, P. H.; Kan, M. et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 2013, 13, 3870-3877.

34

Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963-8971.

35

Kim, I. S.; Sangwan, V. K.; Jariwala, D.; Wood, J. D.; Park, S.; Chen, K. S.; Shi, F. Y.; Ruiz-Zepeda, F.; Ponce, A.; Jose-Yacaman, M. et al. Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2. ACS Nano 2014, 8, 10551-10558.

36

Senthilkumar, V.; Tam, L. C.; Kim, Y. S.; Sim, Y.; Seong, M. J.; Jang, J. I. Direct vapor phase growth process and robust photoluminescence properties of large area MoS2 layers. Nano Res. 2014, 7, 1759-1768.

37

Yang, S. Y.; Shim, G. W.; Seo, S. B.; Choi, S. Y. Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Res. 2017, 10, 255-262.

38

Brauer, G. Die oxyde des niobs. Z. Anorg. Allg. Chem. 1941, 248, 1-31.

39

Ge, W. Y.; Kawahara, K.; Tsuji, M.; Ago, H. Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD. Nanoscale 2013, 5, 5773-5778.

40

Zhao, S.; Hotta, T.; Koretsune, T.; Watanabe, K.; Taniguchi, T.; Sugawara, K.; Takahashi, T.; Shinohara, H.; Kitaura, R. Two-dimensional metallic NbS2: Growth, optical identification and transport properties. 2D Mater. 2016, 3, 025027.

41

Yanase, T.; Watanabe, S.; Weng, M. T.; Wakeshima, M.; Hinatsu, Y.; Nagahama, T.; Shimada, T. Chemical vapor deposition of NbS2 from a chloride source with H2 flow: Orientation control of ultrathin crystals directly grown on SiO2/Si substrate and charge density wave transition. Cryst. Growth Des. 2016, 16, 4467-4472.

42

Wang, X. S.; Lin, J. H.; Zhu, Y. M.; Luo, C.; Suenaga, K.; Cai, C. Z.; Xie, L. M. Chemical vapor deposition of trigonal prismatic NbS2 monolayers and 3R-polytype few-layers. Nanoscale 2017, 9, 16607-16611.

43

Kozhakhmetov, A.; Choudhury, T. H.; Al Balushi, Z. Y.; Chubarov, M.; Redwing, J. M. Effect of substrate on the growth and properties of thin 3R NbS2 films grown by chemical vapor deposition. J. Cryst. Growth 2018, 486, 137-141.

44

Xu, E. Z.; Liu, H. M.; Park, K.; Li, Z.; Losovyj, Y.; Starr, M.; Werbianskyj, M.; Fertig, H. A.; Zhang, S. X. p-Type transition-metal doping of large-area MoS2 thin films grown by chemical vapor deposition. Nanoscale 2017, 9, 3576-3584.

45

Li, Z.; Xu, E. Z.; Losovyj, Y.; Li, N.; Chen, A. P.; Swartzentruber, B.; Sinitsyn, N.; Yoo, J.; Jia, Q. X.; Zhang, S. X. Surface oxidation and thermoelectric properties of indium-doped tin telluride nanowires. Nanoscale 2017, 9, 13014-13024.

46

Yang, W. C.; Xie, Y. T.; Zhu, W. K.; Park, K.; Chen, A. P.; Losovyj, Y.; Li, Z.; Liu, H. M.; Starr, M.; Acosta, J. A. et al. Epitaxial thin films of pyrochlore iridate Bi2+xIr2-yO7-δ: Structure, defects and transport properties. Sci. Rep. 2017, 7, 7740.

47

Dash, J. K.; Chen, L.; Dinolfo, P. H.; Lu, T. M.; Wang, G. C. A method toward fabricating semiconducting 3R-NbS2 ultrathin films. J. Phys. Chem. C 2015, 119, 19763-19771.

48

Onari, S.; Arai, T.; Aoki, R.; Nakamura, S. Raman scattering in 3R-NbS2. Solid State Commun. 1979, 31, 577-579.

49

McMullan, W. G.; Irwin, J. C. Raman scattering from 2H and 3R-NbS2. Solid State Commun. 1983, 45, 557-560.

50

Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966-971.

51

Laskar, M. R.; Ma, L.; Kannappan, S.; Park, P. S.; Krishnamoorthy, S.; Nath, D. N.; Lu, W.; Wu, Y. Y.; Rajan, S. Large area single crystal (0001) oriented MoS2. Appl. Phys. Lett. 2013, 102, 252108.

52

Lee, Y.; Lee, J.; Bark, H.; Oh, I. K.; Ryu, G. H.; Lee, Z.; Kim, H.; Cho, J. H.; Ahn, J. H.; Lee, C. Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. Nanoscale 2014, 6, 2821-2826.

53

Lin, Y. C.; Zhang, W. J.; Huang, J. K.; Liu, K. K.; Lee, Y. H.; Liang, C. T.; Chu, C. W.; Li, L. J. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 2012, 4, 6637-6641.

54

Elías, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R. T.; Feng, S. M.; Long, A. D.; Hayashi, T.; Kim, Y. A.; Endo, M. et al. Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano 2013, 7, 5235-5242.

55

Song, J. G.; Park, J.; Lee, W.; Choi, T.; Jung, H.; Lee, C. W.; Hwang, S. H.; Myoung, J. M.; Jung, J. H.; Kim, S. H. et al. Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. ACS Nano 2013, 7, 11333-11340.

56

Orofeo, C. M.; Suzuki, S.; Sekine, Y.; Hibino, H. Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films. Appl. Phys. Lett. 2014, 105, 083112.

57

Tai, G. A.; Zeng, T.; Yu, J.; Zhou, J. X.; You, Y. C.; Wang, X. F.; Wu, H. R.; Sun, X.; Hu, T. S.; Guo, W. L. Fast and large-area growth of uniform MoS2 monolayers on molybdenum foils. Nanoscale 2016, 8, 2234-2241.

58

Deokar, G.; Rajput, N. S.; Vancsó, P.; Ravaux, F.; Jouiad, M.; Vignaud, D.; Cecchet, F.; Colomer, J. F. Large area growth of vertically aligned luminescent MoS2 nanosheets. Nanoscale 2017, 9, 277-287.

59

Wu, C. R.; Chang, X. R.; Wu, C. H.; Lin, S. Y. The growth mechanism of transition metal dichalcogenides by using sulfurization of pre-deposited transition metals and the 2D crystal hetero-structure establishment. Sci. Rep. 2017, 7, 42146.

60

Nakashima, S.; Tokuda, Y.; Mitsuishi, A.; Aoki, R.; Hamaue, Y. Raman scattering from 2H-NbS2 and intercalated NbS2. Solid State Commun. 1982, 42, 601-604.

61

Bark, H.; Choi, Y.; Jung, J.; Kim, J. H.; Kwon, H.; Lee, J.; Lee, Z.; Cho, J. H.; Lee, C. Large-area niobium disulfide thin films as transparent electrodes for devices based on two-dimensional materials. Nanoscale 2018, 10, 1056-1062.

62

Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

63

Obolonchik, V. A.; Radzikovskaya, S. V.; Bukhanevich, V. F. A study of niobium and tantalum sulfides. Sov. Powder Metall. Met. Ceram. 1965, 4, 877-881.

64

Gomes, M. A. B.; de S. Bulhões, L. O.; de Castro, S. C.; Damião, A. J. The electrochromic process at Nb2O5 electrodes prepared by thermal oxidation of niobium. J. Electrochem. Soc. 1990, 137, 3067-3070.

65

Siriwardane, R. V.; Cook, J. M. Interactions of NO and SO2 with iron deposited on silica. J. Colloid Interface Sci. 1985, 104, 250-257.

66

Christie, A. B.; Lee, J.; Sutherland, I.; Walls, J. M. An XPS study of ion-induced compositional changes with group Ⅱ and group IV compounds. Appl. Surf. Sci. 1983, 15, 224-237.

Nano Research
Pages 5978-5988
Cite this article:
Li Z, Yang W, Losovyj Y, et al. Large-size niobium disulfide nanoflakes down to bilayers grown by sulfurization. Nano Research, 2018, 11(11): 5978-5988. https://doi.org/10.1007/s12274-018-2111-z

773

Views

21

Crossref

N/A

Web of Science

22

Scopus

4

CSCD

Altmetrics

Received: 13 March 2018
Revised: 22 May 2018
Accepted: 22 May 2018
Published: 20 June 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return