AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Engineering subcellular-patterned biointerfaces to regulate the surface wetting of multicellular spheroids

Luying Wang1,3Pingqiang Cai4Jing Luo2,3Feilong Zhang1,3Jian Liu2Yupeng Chen2,3Zhongpeng Zhu2,3Yongyang Song2,3Bingquan Yang2Xi Liu2,3Xiaodong Chen4Shutao Wang2,3( )
Beijing National Laboratory for Molecular Sciences (BNLMS)Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of SciencesBeijing100190China
CAS Key Laboratory of Bio-inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
University of Chinese Academy of SciencesBeijing100049China
School of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
Show Author Information

Graphical Abstract

Abstract

Studying the wetting behaviors of multicellular spheroids is crucial in the fields of embryo implantation, cancer propagation, and tissue repair. Existing strategies for controlling the wetting of multicellular spheroids mainly focus on surface chemistry and substrate rigidity. Although topography is another important feature in the biological micro-environment, its effect on multicellular spheroid wetting has seldom been explored. In this study, the influence of topography on the surface wetting of multicellular spheroids was investigated using subcellular- patterned opal films with controllable colloidal particle diameters (from 200 to 1, 500 nm). The wetting of hepatoma carcinoma cellular (Hep G2) spheroids was impaired on opal films compared with that on flat substrates, and the wetting rate decreased as colloidal particle diameter increased. The decrement reached 48.5% when the colloidal particle diameter was 1, 500 nm. The subcellular-patterned topography in opal films drastically reduced the cellular mobility in precursor films, especially the frontier cells in the leading edge. The frontier cells failed to form mature focal adhesions and stress fibers on micro-patterned opal films. This was due to gaps between colloidal particles leaving adhesion vacancies, causing weak cell–substrate adhesion and consequent retarded migration of Hep G2 spheroids. Our study manifests the inhibiting effects of subcellular-patterned topography on the wetting behaviors of multicellular spheroids, providing new insight into tissue wetting-associated treatments and biomaterial design.

References

1

Cha, J.; Sun, X. F.; Dey, S. K. Mechanisms of implantation: Strategies for successful pregnancy. Nat. Med. 2012, 18, 1754-1767.

2

Friedl, P.; Alexander, S. Cancer invasion and the microenvironment: Plasticity and reciprocity. Cell 2011, 147, 992-1009.

3

Friedl, P.; Locker, J.; Sahai, E.; Segall, J. E. Classifying collective cancer cell invasion. Nat. Cell Biol. 2012, 14, 777-783.

4

Gurtner, G. C.; Werner, S.; Barrandon, Y.; Longaker, M. T. Wound repair and regeneration. Nature 2008, 453, 314-321.

5

Gao, W. W.; Hu, C. M. J.; Fang, R. H.; Luk, B. T.; Su, J.; Zhang, L. F. Surface functionalization of gold nanoparticles with red blood cell membranes. Adv. Mater. 2013, 25, 3549-3553.

6

Chen, L.; Yan, C.; Zheng, Z. J. Functional polymer surfaces for controlling cell behaviors. Mater. Today 2018, 21, 38-59.

7

Wang, X.; Gan, H.; Sun, T. L.; Su, B. L.; Fuchs, H.; Vestweber, D.; Butz, S. Stereochemistry triggered differential cell behaviours on chiral polymer surfaces. Soft Matter 2010, 6, 3851-3855.

8

Wang, L. Y.; Liu, H. L.; Zhang, F. L.; Li, G. N.; Wang, S. T. Smart thin hydrogel coatings harnessing hydrophobicity and topography to capture and release cancer cells. Small 2016, 12, 4697-4701.

9

Cui, H. J.; Zhang, P. C.; Wang, W. S.; Li, G. N.; Hao, Y. W.; Wang, L. Y.; Wang, S. T. Near-infrared (NIR) controlled reversible cell adhesion on a responsive nano-biointerface. Nano Res. 2017, 10, 1345-1355.

10

Li, J. S.; Kwiatkowska, B.; Lu, H.; Voglstätter, M.; Ueda, E.; Grunze, M.; Sleeman, J.; Levkin, P. A.; Nazarenko, I. Collaborative action of surface chemistry and topography in the regulation of mesenchymal and epithelial markers and the shape of cancer cells. ACS Appl. Mater. Interfaces 2016, 8, 28554-28565.

11

Li, L. X.; Schmitt, M.; Matzke-Ogi, A.; Wadhwani, P.; Orian-Rousseau, V.; Levkin, P. A. CD44v6-peptide functionalized nanoparticles selectively bind to metastatic cancer cells. Adv. Sci. 2017, 4, 1600202.

12

Jeon, K.; Oh, H. J.; Lim, H.; Kim, J. H.; Lee, D. H.; Lee, E. R.; Park, B. H.; Cho, S. G. Self-renewal of embryonic stem cells through culture on nanopattern polydimethylsiloxane substrate. Biomaterials 2012, 33, 5206-5220.

13

Liu, H.; Xu, G. W.; Wang, Y. F.; Zhao, H. S.; Xiong, S.; Wu, Y.; Heng, B. C.; An, C. R.; Zhu, G. H.; Xie, D. H. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Biomaterials 2015, 49, 103-112.

14

Park, J.; Bauer, S.; von der Mark, K.; Schmuki, P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano. Lett. 2007, 7, 1686-1691.

15

Hu, B. H.; Shi, W. X.; Wu, Y. L.; Leow, W. R.; Cai, P. Q.; Li, S. Z.; Chen, X. D. Orthogonally engineering matrix topography and rigidity to regulate multicellular morphology. Adv. Mater. 2014, 26, 5786-5793.

16

Engler, A. J.; Sen, S.; Sweeney, H. L.; Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677-689.

17

Saha, K.; Keung, A. J.; Irwin, E. F.; Li, Y.; Little, L.; Schaffer, D. V.; Healy, K. E. Substrate modulus directs neural stem cell behavior. Biophys. J. 2008, 95, 4426-4438.

18

Ma, L.; Qin, H.; Cheng, C.; Xia, Y.; He, C.; Nie, C. X.; Wang, L. R.; Zhao, C. S. Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioactivity via dopamine grafted heparin-like polymers and heparin. J. Mater. Chem. B 2014, 2, 363-375.

19

Kim, H. N.; Jang, K. J.; Shin, J. Y.; Kang, D.; Kim, S. M.; Koh, I.; Hong, Y.; Jang, S.; Kim, M. S.; Kim, B. S. et al. Artificial slanted nanocilia array as a mechanotransducer for controlling cell polarity. ACS Nano 2017, 11, 730-741.

20

Pampaloni, F.; Reynaud, E. G.; Stelzer, E. H. K. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 2007, 8, 839-845.

21

Fitzgerald, K. A.; Malhotra, M.; Curtin, C. M.; O' Brien, F. J.; O' Driscoll, C. M. Life in 3D is never flat: 3D models to optimise drug delivery. J. Controlled Release 2015, 215, 39-54.

22

Ryan, P. L.; Foty, R. A.; Kohn, J.; Steinberg, M. S. Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity. Proc. Natl. Acad. Sci. USA 2001, 98, 4323-4327.

23

Douezan, S.; Dumond, J.; Brochard-Wyart, F. Wetting transitions of cellular aggregates induced by substrate rigidity. Soft Matter 2012, 8, 4578-4583.

24

Beaune, G.; Duclos, G.; Khalifat, N.; Stirbat, T. V.; Vignjevic, D. M.; Brochard-Wyart, F. Reentrant wetting transition in the spreading of cellular aggregates. Soft Matter 2017, 13, 8474-8482.

25

Hatton, B.; Mishchenko, L.; Davis, S.; Sandhage, K. H.; Aizenberg, J. Assembly of large-area, highly ordered, crack-free inverse opal films. Proc. Natl. Acad. Sci. USA 2010, 107, 10354-10359.

26

Patoka, P.; Giersig, M. Self-assembly of latex particles for the creation of nanostructures with tunable plasmonic properties. J. Mater. Chem. 2011, 21, 16783-16796.

27

Zhang, J. T.; Wang, L. L.; Lamont, D. N.; Velankar, S. S.; Asher, S. A. Fabrication of large-area two-dimensional colloidal crystals. Angew. Chem. , Int. Ed. 2012, 51, 6117- 6120.

28

Wang, L. K.; Yan, Q. F.; Zhao, X. S. From planar defect in opal to planar defect in inverse opal. Langmuir 2006, 22, 3481-3484.

29

Discher, D. E.; Janmey, P.; Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310, 1139-1143.

30

Cai, P. Q.; Layani, M.; Leow, W. R.; Amini, S.; Liu, Z. Y.; Qi, D. P.; Hu, B. H.; Wu, Y. -L.; Miserez, A.; Magdassi, S. et al. Bio-inspired mechanotactic hybrids for orchestrating traction-mediated epithelial migration. Adv. Mater. 2016, 28, 3102-3110.

31

Yeung, T.; Georges, P. C.; Flanagan, L. A.; Marg, B.; Ortiz, M.; Funaki, M.; Zahir, N.; Ming, W. Y.; Weaver, V.; Janmey, P. A. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 2005, 60, 24-34.

32

Yeh, Y. C.; Ling, J. Y.; Chen, W. C.; Lin, H. H.; Tang, M. J. Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: Reciprocal regulation of caveolin-1 and β1 integrin. Sci. Rep. 2017, 7, 15008.

33

Wong, S. Y.; Ulrich, T. A.; Deleyrolle, L. P.; MacKay, J. L.; Lin, J. M. G.; Martuscello, R. T.; Jundi, M. A.; Reynolds, B. A.; Kumar, S. Constitutive activation of myosin-dependent contractility sensitizes glioma tumor-initiating cells to mechanical inputs and reduces tissue invasion. Cancer Res. 2015, 75, 1113-1122.

34

Trappmann, B.; Gautrot, J. E.; Connelly, J. T.; Strange, D. G. T.; Li, Y.; Oyen, M. L.; Stuart, M. A. C.; Boehm, H.; Li, B. J.; Vogel, V. et al. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 2012, 11, 642-649.

35

Oakes, P. W.; Bidone, T. C.; Beckham, Y.; Skeeters, A. V.; Ramirez-San Juan, G. R.; Winter, S. P.; Voth, G. A.; Gardel, M. L. Lamellipodium is a myosin-independent mechanosensor. Proc. Natl. Acad. Sci. USA 2018, 115, 2646-2651.

36

Mullen, C. A.; Vaughan, T. J.; Billiar, K. L.; McNamara, L. M. The effect of substrate stiffness, thickness, and cross- linking density on osteogenic cell behavior. Biophys. J. 2015, 108, 1604-1612.

37

Guo, M.; Pegoraro, A. F.; Mao, A.; Zhou, E. H.; Arany, P. R.; Han, Y. L.; Burnette, D. T.; Jensen, M. H.; Kasza, K. E.; Moore, J. R. et al. Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proc. Natl. Acad. Sci. USA 2017, 114, E8618-E8627.

38

Engler, A. J.; Griffin, M. A.; Sen, S.; Bonnemann, C. G.; Sweeney, H. L.; Discher, D. E. Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments. J. Cell Biol. 2004, 166, 877-887.

39

Ye, G.; Hayden, C. A.; Goward, G. R. Proton dynamics of nafion and nafion/SiO2 composites by solid state NMR and pulse field gradient NMR. Macromolecules 2007, 40, 1529-1537.

40

Douezan, S.; Guevorkian, K.; Naouar, R.; Dufour, S.; Cuvelier, D.; Brochard-Wyart, F. Spreading dynamics and wetting transition of cellular aggregates. Proc. Natl. Acad. Sci. USA 2011, 108, 7315-7320.

41

Beaune, G.; Stirbat, T. V.; Khalifat, N.; Cochet-Escartin, O.; Garcia, S.; Gurchenkov, V. V.; Murrell, M. P.; Dufour, S.; Cuvelier, D.; Brochard-Wyart, F. How cells flow in the spreading of cellular aggregates. Proc. Natl. Acad. Sci. USA 2014, 111, 8055-8060.

42

Douezan, S.; Brochard-Wyart, F. Spreading dynamics of cellular aggregates confined to adhesive bands. Eur. Phys. J. E 2012, 35, 116.

43

Omelchenko, T.; Vasiliev, J. M.; Gelfand, I. M.; Feder, H. H.; Bonder, E. M. Rho-dependent formation of epithelial "leader" cells during wound healing. Proc. Natl. Acad. Sci. USA 2003, 100, 10788-10793.

44

Reffay, M.; Petitjean, L.; Coscoy, S.; Grasland-Mongrain, E.; Amblard, F.; Buguin, A.; Silberzan, P. Orientation and polarity in collectively migrating cell structures: Statics and dynamics. Biophys. J. 2011, 100, 2566-2575.

45

Petitjean, L.; Reffay, M.; Grasland-Mongrain, E.; Poujade, M.; Ladoux, B.; Buguin, A.; Silberzan, P. Velocity fields in a collectively migrating epithelium. Biophys. J. 2010, 98, 1790-1800.

46

Vitorino, P.; Meyer, T. Modular control of endothelial sheet migration. Genes Dev. 2008, 22, 3268-3281.

47

Fenteany, G.; Janmey, P. A.; Stossel, T. P. Signaling pathways and cell mechanics involved in wound closure by epithelial cell sheets. Curr. Biol. 2000, 10, 831-838.

48

Poujade, M.; Grasland-Mongrain, E.; Hertzog, A.; Jouanneau, J.; Chavrier, P.; Ladoux, B.; Buguin, A.; Silberzan, P. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl. Acad. Sci. USA 2007, 104, 15988-15993.

49

Trepat, X.; Wasserman, M. R.; Angelini, T. E.; Millet, E.; Weitz, D. A.; Butler, J. P.; Fredberg, J. J. Physical forces during collective cell migration. Nat. Phys. 2009, 5, 426-430.

50

Chrzanowska-Wodnicka, M.; Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 1996, 133, 1403-1415.

51

Liu, Z. J.; Tan, J. L.; Cohen, D. M.; Yang, M. T.; Sniadecki, N. J.; Ruiz, S. A.; Nelson, C. M.; Chen, C. S. Mechanical tugging force regulates the size of cell-cell junctions. Proc. Natl. Acad. Sci. USA 2010, 107, 9944-9949.

52

Tambe, D. T.; Hardin, C. C.; Angelini, T. E.; Rajendran, K.; Park, C. Y.; Serra-Picamal, X.; Zhou, E. H.; Zaman, M. H.; Butler, J. P.; Weitz, D. A. et al. Collective cell guidance by cooperative intercellular forces. Nat. Mater. 2011, 10, 469-475.

53

Vedula, S. R. K.; Ravasio, A.; Lim, C. T.; Ladoux, B. Collective cell migration: A mechanistic perspective. Physiology 2013, 28, 370-379.

54

Ladoux, B.; Mège, R. M. Mechanobiology of collective cell behaviours. Nat. Rev. Mol. Cell Biol. 2017, 18, 743-757.

55

Reffay, M.; Parrini, M. C.; Cochet-Escartin, O.; Ladoux, B.; Buguin, A.; Coscoy, S.; Amblard, F.; Camonis, J.; Silberzan, P. Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nat. Cell Biol. 2014, 16, 217-223.

56

Tabarin, T.; Pageon, S. V.; Bach, C. T. T.; Lu, Y.; O'Neill, G. M.; Gooding, J. J.; Gaus, K. Insights into adhesion biology using single-molecule localization microscopy. ChemPhysChem 2014, 15, 606-618.

57

Puklin-Faucher, E.; Sheetz, M. P. The mechanical integrin cycle. J. Cell Sci. 2009, 122, 179-186.

58

Choi, C. K.; Vicente-Manzanares, M.; Zareno, J.; Whitmore, L. A.; Mogilner, A.; Horwitz, A. R. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin Ⅱ motor-independent manner. Nat. Cell Biol. 2008, 10, 1039-1050.

59

Parsons, J. T.; Horwitz, A. R.; Schwartz, M. A. Cell adhesion: Integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 2010, 11, 633-643.

60

Ridley, A. J.; Schwartz, M. A.; Burridge, K.; Firtel, R. A.; Ginsberg, M. H.; Borisy, G.; Parsons, J. T.; Horwitz, A. R. Cell migration: Integrating signals from front to back. Science 2003, 302, 1704-1709.

61

Webb, D. J.; Parsons, J. T.; Horwitz, A. F. Adhesion assembly, disassembly and turnover in migrating cells—Over and over and over again. Nat. Cell Biol. 2002, 4, E97-E100.

62

Cai, P. Q.; Hu, B. H.; Leow, W. R.; Wang, X. Y.; Loh, X. J.; Wu, Y. -L.; Chen, X. D. Biomechano-interactive materials and interfaces. Adv. Mater. 2018, 30, 1800572.

63

Xue, F.; Meng, Z. H.; Qi, F. L.; Xue, M.; Wang, F. Y.; Chen, W.; Yan, Z. Q. Two-dimensional inverse opal hydrogel for pH sensing. Analyst 2014, 139, 6192-6196.

Nano Research
Pages 5704-5715
Cite this article:
Wang L, Cai P, Luo J, et al. Engineering subcellular-patterned biointerfaces to regulate the surface wetting of multicellular spheroids. Nano Research, 2018, 11(10): 5704-5715. https://doi.org/10.1007/s12274-018-2117-6
Part of a topical collection:

743

Views

13

Crossref

N/A

Web of Science

14

Scopus

2

CSCD

Altmetrics

Received: 16 April 2018
Revised: 23 May 2018
Accepted: 30 May 2018
Published: 22 June 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return