Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Aggregation-induced emission luminogens (AIEgens) are fluorescent agents that are ideal for bioimaging and have been widely used for organelle targeting, cellular mapping, and tracing. Owing to their promising characteristics, AIEgen-based nanoparticles have recently been used for the stimulated emission depletion (STED) super-resolution imaging of fixed cells. In the present study, and for the first time, we used an AIEgen for dynamic STED nanoscopic imaging of a specific organelle in live cancer cells. TPA-T-CyP is a synthetic red & NIR-emitting luminogen with AIE features that can spontaneously and specifically aggregate on mitochondria without the need for encapsulation or surface modification. The STED efficiency of aggregated TPA-T-CyP can reach more than 80%, and super-resolution imaging of TPA-T-CyP-stained mitochondria in live HeLa cells is possible, with a lateral spatial resolution of 74 nm. We found that TPA-T-CyP enabled the dynamic visualization of mitochondria, and the motion, fusion, and fission of mitochondria were clearly observable on a super-resolution scale. AIEgen-based super-resolution organelle visualization has great potential for many basic biomedical studies.
Giepmans, B. N. G.; Adams, S. R.; Ellisman, M. H.; Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 2006, 312, 217–224.
Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 2010, 110, 2620–2640.
Domaille, D. W.; Que, E. L.; Chang, C. J. Synthetic fluorescent sensors for studying the cell biology of metals. Nat. Chem. Biol. 2008, 4, 168–175.
Hidalgo, M.; Urbano, M.; Ortiz, I.; Demyda-Peyras, S.; Murabito, M. R.; Gálvez, M. J.; Dorado, J. DNA integrity of canine spermatozoa during chill storage assessed by the sperm chromatin dispersion test using bright-field or fluorescence microscopy. Theriogenology 2015, 84, 399–406.
Tsachaki, M.; Birk, J.; Egert, A.; Odermatt, A. Corrigendum to "Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions"[Biochim. Biophys. Acta 1853/7 (2015) 1672–1682]. Biochim Biophys Acta 2015, 1853, 1918.
Kim, H. M.; Cho, B. R. Small-molecule two-photon probes for bioimaging applications. Chem. Rev. 2015, 115, 5014–5055.
Kim, S.; Pudavar, H. E.; Bonoiu, A.; Prasad, P. N. Aggregation-enhanced fluorescence in organically modified silica nanoparticles: A novel approach toward high-signaloutput nanoprobes for two-photon fluorescence bioimaging. Adv. Mater. 2007, 19, 3791–3795.
Qian, J.; Wang, D.; Cai, F. H.; Zhan, Q. Q.; Wang, Y. L.; He, S. L. Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging. Biomaterials 2012, 33, 4851–4860.
Birks, J. B. Photophysics of Aromatic Molecules; WileyInterscience: London, New York, 1970.
Zheng, Q. D.; Ohulchanskyy, T. Y.; Sahoo, Y.; Prasad, P. N. Water-dispersible polymeric structure co-encapsulating a novel hexa-peri-hexabenzocoronene core containing chromophore with enhanced two-photon absorption and magnetic nanoparticles for magnetically guided two-photon cellular imaging. J. Phys. Chem. C 2007, 111, 16846–16851.
Wagh, A.; Qian, S. Y.; Law, B. Development of biocompatible polymeric nanoparticles for in vivo NIR and FRET imaging. Bioconjugate Chem. 2012, 23, 981–992.
Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B. et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5- pentaphenylsilole. Chem. Commun. 2001, 1740–1741.
Qian, J.; Tang, B. Z. AIE luminogens for bioimaging and theranostics: From organelles to animals. Chem 2017, 3, 56–91.
Leung, B. O.; Chou, K. C. Review of super-resolution fluorescence microscopy for biology. Appl. Spectrosc. 2011, 65, 967–980.
Gu, X. G.; Zhao, E. G.; Zhao, T.; Kang, M. M.; Gui, C.; Lam, J. W. Y.; Du, S. W.; Loy, M. M. T.; Tang, B. Z. A mitochondrion-specific photoactivatable fluorescence turn-on AIE-based bioprobe for localization super-resolution microscope. Adv. Mater. 2016, 28, 5064–5071.
Zhou, J.; Yu, G. C.; Huang, F. H. AIE opens new applications in super-resolution imaging. J. Mater. Chem. B 2016, 4, 7761–7765.
Li, D. Y.; Qin, W.; Xu, B.; Qian, J.; Tang, B. Z. AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term super-resolution bioimaging. Adv. Mater. 2017, 29, 1703643.
Fang, X. F.; Chen, X. Z.; Li, R. Q.; Liu, Z. H; Chen, H. B.; Sun, Z. Z.; Ju, B.; Liu, Y. F.; Zhang, S. X. A.; Ding, D. et al. Multicolor photo-crosslinkable AIEgens toward compact nanodots for subcellular imaging and STED nanoscopy. Small 2017, 13, 1702128.
Yu, J. X.; Sun, X. H.; Cai, F. H.; Zhu, Z. F.; Qin, A. J.; Qian, J.; Tang, B. Z.; He, S. L. Low photobleaching and high emission depletion efficiency: The potential of AIE luminogen as fluorescent probe for STED microscopy. Opt. Lett. 2015, 40, 2313–2316.
Chang, Z. F.; Jing, L. M.; Chen, B.; Zhang, M. S.; Cai, X. L.; Liu, J. J.; Ye, Y. C.; Lou, X. D.; Zhao, Z. J.; Liu, B. et al. Rational design of asymmetric red fluorescent probes for live cell imaging with high AIE effects and large two-photon absorption cross sections using tunable terminal groups. Chem. Sci. 2016, 7, 4527–4536.
Zhao, E. G.; Hong, Y. N.; Chen, S. J.; Leung, C. W. T.; Chan, C. Y. K.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Highly fluorescent and photostable probe for long-term bacterial viability assay based on aggregation-induced emission. Adv. Healthc. Mater. 2014, 3, 88–96.
Ow, Y. L. P.; Green, D. R.; Hao, Z.; Mak, T. W. Cytochrome c: Functions beyond respiration. Nat. Rev. Mol. Cell Biol. 2008, 9, 532–542.
Rehman, J.; Zhang, H. J.; Toth, P. T.; Zhang, Y. M.; Marsboom, G.; Hong, Z. G.; Salgia, R.; Husain, A. N.; Wietholt, C.; Archer, S. L. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J. 2012, 26, 2175–2186.
Archer, S. L. Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N. Engl. J. Med. 2013, 369, 2236–2251.
Schrepfer, E.; Scorrano, L. Mitofusins, from mitochondria to metabolism. Mol. Cell 2016, 61, 683–694.
Sanchis-Gomar, F.; Lippi, G.; Lucia, A. 'Mitotherapy' for heart failure. Trends Mol. Med. 2016, 22, 267–269.
Marsboom, G.; Toth, P. T.; Ryan, J. J.; Hong, Z. G.; Wu, X. C.; Fang, Y. H.; Thenappan, T.; Piao, L.; Zhang, H. J.; Pogoriler, J. et al. Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circul. Res. 2012, 110, 1484–1497.
Ryan, J. J.; Marsboom, G.; Fang, Y. H.; Toth, P. T.; Morrow, E.; Luo, N.; Piao, L.; Hong, Z. G.; Ericson, K.; Zhang, H. J. et al. PGC1α-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2013, 187, 865–878.
Yoon, Y. S.; Galloway, C. A.; Jhun, B. S.; Yu, T. Z. Mitochondrial dynamics in diabetes. Antioxid. Redox Sign. 2011, 14, 439–457.
Zorzano, A.; Liesa, M.; Palacin, M. Role of mitochondrial dynamics proteins in the pathophysiology of obesity and type 2 diabetes. Int J. Biochem. Cell Biol. 2009, 41, 1846–1854.
Westermeier, F.; Navarro-Marquez, M.; López-Crisosto, C.; Bravo-Sagua, R.; Quiroga, C.; Bustamante, M.; Verdejo, H. E.; Zalaquett, R.; Ibacache, M.; Parra, V. et al. Defective insulin signaling and mitochondrial dynamics in diabetic cardiomyopathy. Biochim Biophys Acta 2015, 1853, 1113– 1118.
Shenouda, S. M.; Widlansky, M. E.; Chen, K.; Xu, G. Q.; Holbrook, M.; Tabit, C. E.; Hamburg, N. M.; Frame, A. A.; Caiano, T. L.; Kluge, M. A. et al. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation 2011, 124, 444–453.
Bonda, D. J.; Smith, M. A.; Perry, G.; Lee, H. G.; Wang, X. L.; Zhu, X. W. The mitochondrial dynamics of Alzheimer's disease and Parkinson's disease offer important opportunities for therapeutic intervention. Curr. Pharm. Des. 2011, 17, 3374–3380.
Van Laar, V. S.; Berman, S. B. Mitochondrial dynamics in Parkinson's disease. Exp. Neurol. 2009, 218, 247–256.
Zhu, X. W.; Perry, G.; Smith, M. A.; Wang, X. L. Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. J. Alzheimers Dis. 2013, 33, S253–S262.
Santos, D.; Cardoso, S. M. Mitochondrial dynamics and neuronal fate in Parkinson's disease. Mitochondrion 2012, 12, 428–437.
Mishra, P.; Chan, D. C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Bio. 2014, 15, 634–646.
Amato, P.; Tachibana, M.; Sparman, M.; Mitalipov, S. Threeparent in vitro fertilization: Gene replacement for the prevention of inherited mitochondrial diseases. Fertil. Steril. 2014, 101, 31–35.
Frey, T. G.; Mannella, C. A. The internal structure of mitochondria. Trends Biochem. Sci 2000, 25, 319–324.
Picard, M.; McManus, M. J.; Csordás, G.; Várnai, P.; Dorn, G. W.; Williams, D.; Hajnóczky, G.; Wallace, D. C. Transmitochondrial coordination of cristae at regulated membrane junctions. Nat. Commun. 2015, 6, 6269.
Zhao, N.; Chen, S. J.; Hong, Y. N.; Tang, B. Z. A red emitting mitochondria-targeted AIE probe as an indicator for membrane potential and mouse sperm activity. Chem. Commun. 2015, 51, 13599–13602.
Shim, S. H.; Xia, C. L.; Zhong, G. S.; Babcock, H. P.; Vaughan, J. C.; Huang, B.; Wang, X.; Xu, C.; Bi, G. Q.; Zhuang, X. W. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc. Natl. Acad. Sci. USA 2012, 109, 13978–13983.
Hanne, J.; Falk, H. J.; Görlitz, F.; Hoyer, P.; Engelhardt, J.; Sahl, S. J.; Hell, S. W. STED nanoscopy with fluorescent quantum dots. Nat. Commun. 2015, 6, 7127.
Liu, Y. J.; Lu, Y. Q.; Yang, X. S.; Zheng, X. L.; Wen, S. H.; Wang, F.; Vidal, X.; Zhao, J. B.; Liu, D. M.; Zhou, Z. G. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 2017, 543, 229–233.
Zhan, Q. Q.; Liu, H. C.; Wang, B. J.; Wu, Q. S.; Pu, R.; Zhou, C.; Huang, B. R.; Peng, X. Y.; Ågren, H.; He, S. L. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun. 2017, 8, 1058.
Sesaki, H.; Jensen, R. E. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J. Cell Biol. 1999, 147, 699–706.