Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Immunotherapy is a promising strategy to inhibit cancer progression via activation of the immune system. In immunotherapy, adjuvants as immunologic stimulants or delivery systems play a critical role in inducing the antitumor immune response and decreasing the side effects of immune stimulants. Polymer nanoparticles have attracted increasing attention as an indispensable component of immunotherapy, owing to their favorable properties, such as excellent biocompatibility and biodegradability, flexible size, high activity as immune stimulants, large surface area for binding multivalent immune ligands, and high loading capacity for immune-related components. In cancer immunotherapy, polymer nanoparticles can protect cargo from the surrounding milieu, deliver the antigens and immunostimulatory molecules to antigen-presenting cells, or stimulate robust T cell response. This review summarizes the current advancements in polymer nanoparticle adjuvants for cancer immunotherapy and predicts their prospects in fundamental and clinical studies.
Neves, H.; Kwok, H. F. Recent advances in the field of anti-cancer immunotherapy. BBA Clin. 2015, 3, 280-288.
Banday, A. H.; Jeelani, S.; Hruby, V. J. Cancer vaccine adjuvants-recent clinical progress and future perspectives. Immunopharmacol. Immunotoxicol. 2015, 37, 1-11.
Sun, B. B.; Xia, T. Nanomaterial-based vaccine adjuvants. J. Mater. Chem. B 2016, 4, 5496-5509.
Serda, R. E. Particle platforms for cancer immunotherapy. Int. J. Nanomedicine 2013, 8, 1683-1696.
O'Hagan, D. T.; Fox, C. B. New generation adjuvants-From empiricism to rational design. Vaccine 2015, 33, B14-B20.
Töpfer, E.; Boraschi, D.; Italiani, P. Innate immune memory: The latest frontier of adjuvanticity. J. Immunol. Res. 2015, 2015, 478408.
Brito, L. A.; O'Hagan, D. T. Designing and building the next generation of improved vaccine adjuvants. J. Control. Release 2014, 190, 563-579.
Bolhassani, A.; Javanzad, S.; Saleh, T.; Hashemi, M.; Aghasadeghi, M. R.; Sadat, S. M. Polymeric nanoparticles: Potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum. Vaccines Immunother. 2014, 10, 321-332.
Reddy, S. T.; Rehor, A.; Schmoekel, H. G.; Hubbell, J. A.; Swartz, M. A. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control. Release 2006, 112, 26-34.
Kumar, S.; Kesharwani, S. S.; Kuppast, B.; Bakkari, M. A.; Tummala, H. Pathogen-mimicking vaccine delivery system designed with a bioactive polymer (inulin acetate) for robust humoral and cellular immune responses. J. Control. Release 2017, 261, 263-274.
Kumar, S.; Kesharwani, S. S.; Kuppast, B.; Rajput, M.; Bakkari, M. A.; Tummala, H. Discovery of inulin acetate as a novel immune-active polymer and vaccine adjuvant: Synthesis, material characterization, and biological evaluation as a toll-like receptor-4 agonist. J. Mater. Chem. B 2016, 4, 7950-7960.
Tukulula, M.; Hayeshi, R.; Fonteh, P.; Meyer, D.; Ndamase, A.; Madziva, M. T.; Khumalo, V.; Labuschagne, P.; Naicker, B.; Swai, H. et al. Curdlan-conjugated PLGA nanoparticles possess macrophage stimulant activity and drug delivery capabilities. Pharm. Res. 2015, 32, 2713-2726.
Li, X. S.; Min, M.; Du, N.; Gu, Y.; Hode, T.; Naylor, M.; Chen, D. J.; Nordquist, R. E.; Chen, W. R. Chitin, chitosan, and glycated chitosan regulate immune responses: The novel adjuvants for cancer vaccine. Clin. Dev. Immunol. 2013, 2013, 387023.
Matera, L. The choice of the antigen in the dendritic cell-based vaccine therapy for prostate cancer. Cancer Treat. Rev. 2010, 36, 131-141.
Coumes, F.; Huang, C. Y.; Huang, C. H.; Coudane, J.; Domurado, D.; Li, S. M.; Darcos, V.; Huang, M. H. Design and development of immunomodulatory antigen delivery systems based on peptide/PEG-PLA conjugate for tuning immunity. Biomacromolecules 2015, 16, 3666-3673.
Silva, J. M.; Videira, M.; Gaspar, R.; Préat, V.; Florindo, H. F. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J. Control. Release 2013, 168, 179-199.
Kim, J.; Wilson, D. R.; Zamboni, C. G.; Green, J. J. Targeted polymeric nanoparticles for cancer gene therapy. J. Drug Target. 2015, 23, 627-641.
Furugaki, K.; Cui, L.; Kunisawa, Y.; Osada, K.; Shinkai, K.; Tanaka, M.; Kataoka, K.; Nakano, K. Intraperitoneal administration of a tumor-associated antigen SART3, CD40L, and GM-CSF gene-loaded polyplex micelle elicits a vaccine effect in mouse tumor models. PLoS ONE 2014, 9, e101854.
Joshi, V. B.; Geary, S. M.; Gross, B. P.; Wongrakpanich, A.; Norian, L. A.; Salem, A. K. Tumor lysate-loaded biodegradable microparticles as cancer vaccines. Expert Rev. Vaccines 2014, 13, 9-15.
Iranpour, S.; Nejati, V.; Delirezh, N.; Biparva, P.; Shirian, S. Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens. J. Exp. Clin. Cancer Res. 2016, 35, 168.
Hanlon, D. J.; Aldo, P. B.; Devine, L.; Alvero, A. B.; Engberg, A. K.; Edelson, R.; Mor, G. Enhanced stimulation of anti-ovarian cancer CD8+ T cells by dendritic cells loaded with nanoparticle encapsulated tumor antigen. Am. J. Reprod. Immunol. 2011, 65, 597-609.
Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193.
Chen, Z.; Zhao, P. F.; Luo, Z. Y.; Zheng, M. B.; Tian, H.; Gong, P.; Gao, G. H.; Pan, H.; Liu, L. L.; Ma, A. Q. et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 2016, 10, 10049-10057.
Seth, A.; Heo, M. B.; Lim, Y. T. Poly(γ-glutamic acid) based combination of water-insoluble paclitaxel and TLR7 agonist for chemo-immunotherapy. Biomaterials 2014, 35, 7992-8001.
He, C. B.; Duan, X. P.; Guo, N. N.; Chan, C.; Poon, C.; Weichselbaum, R. R.; Lin, W. B. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat. Commun. 2016, 7, 12499.
Min, Y. Z.; Roche, K. C.; Tian, S. M.; Eblan, M. J.; McKinnon, K. P.; Caster, J. M.; Chai, S. J.; Herring, L. E.; Zhang, L. E.; Zhang, T. et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 877-882.
Westdorp, H.; Sköld, A. E.; Snijer, B. A.; Franik, S.; Mulder, S. F.; Major, P. P.; Foley, R.; Gerritsen, W. R.; de Vries, I. J. Immunotherapy for prostate cancer: Lessons from responses to tumor-associated antigens. Front. Immunol. 2014, 5, 191.
Toyota, H.; Yanase, N.; Yoshimoto, T.; Harada, M.; Kato, Y.; Mizuguchi, J. Vaccination with OVA-bound nanoparticles encapsulating IL-7 inhibits the growth of OVA-expressing E. G7 tumor cells in vivo. Oncol. Rep. 2015, 33, 292-296.
Shin, J. M.; Oh, S. J.; Kwon, S.; Deepagan, V. G.; Lee, M.; Song, S. H.; Lee, H. J.; Kim, S.; Song, K. H.; Kim, T. W. et al. A PEGylated hyaluronic acid conjugate for targeted cancer immunotherapy. J. Control. Release 2017, 267, 181-190.
Yoshizaki, Y.; Yuba, E.; Sakaguchi, N.; Koiwai, K.; Harada, A.; Kono, K. Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy. Biomaterials 2014, 35, 8186-8196.
Shen, H.; Ackerman, A. L.; Cody, V.; Giodini, A.; Hinson, E. R.; Cresswell, P.; Edelson, R. L.; Saltzman, W. M.; Hanlon, D. J. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 2006, 117, 78-88.
Hamdy, S.; Molavi, O.; Ma, Z. S.; Haddadi, A.; Alshamsan, A.; Gobti, Z.; Elhasi, S.; Samuel, J.; Lavasanifar, A. Co-delivery of cancer-associated antigen and toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 2008, 26, 5046-5057.
Zhang, Z. P.; Tongchusak, S.; Mizukami, Y.; Kang, Y. J.; Ioji, T.; Touma, M.; Reinhold, B.; Keskin, D. B.; Reinherz, E. L.; Sasada, T. Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 2011, 32, 3666-3378.
Hashimoto, D.; Miller, J.; Merad, M. Dendritic cell and macrophage heterogeneity in vivo. Immunity 2011, 35, 323-335.
Palucka, K.; Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 2012, 12, 265-277.
Liu, K.; Nussenzweig, M. C. Origin and development of dendritic cells. Immunol. Rev. 2010, 234, 45-54.
Edwards, A. D.; Diebold, S. S.; Slack, E.; Tomizawa, H.; Hemmi, H.; Kaisho, T.; Akira, S. Toll-like receptor expression in murine DC subsets: Lack of TLR7 expression by CD8α+ DC correlates with unresponsiveness to imidazoquinolines. Eur. J. Immunol. 2003, 33, 827-833.
Barton, G. M.; Kagan, J. C. A cell biological view of toll-like receptor function: Regulation through compartmentalization. Nat. Rev. Immunol. 2009, 9, 535-542.
Rajagopal, D.; Paturel, C.; Morel, Y.; Uematsu, S.; Akira, S.; Diebold, S. S. Plasmacytoid dendritic cell-derived type Ⅰ interferon is crucial for the adjuvant activity of toll-like receptor 7 agonists. Blood 2010, 115, 1949-1957.
Akira, S.; Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 2004, 4, 499-511.
Xu, J.; Xu, L. G.; Wang, C. Y.; Yang, R.; Zhuang, Q.; Han, X.; Dong, Z. L.; Zhu, W. W.; Peng, R.; Liu, Z. Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano 2017, 11, 4463-4474.
Cheng, Y. S.; Xu, F. Anticancer function of polyinosinic-polycytidylic acid. Cancer Biol. Ther. 2010, 10, 1219-1223.
Takemura, R.; Takaki, H.; Okada, S.; Shime, H.; Akazawa, T.; Oshiumi, H.; Matsumoto, M.; Teshima, T.; Seya, T. PolyI: C-induced, TLR3/RIP3-dependent necroptosis backs up immune effector-mediated tumor elimination in vivo. Cancer Immunol. Res. 2015, 3, 902-914.
Fujimura, T.; Nakagawa, S.; Ohtani, T.; Ito, Y.; Aiba, S. Inhibitory effect of the polyinosinic-polycytidylic acid/cationic liposome on the progression of murine B16F10 melanoma. Eur. J. Immunol. 2006, 36, 3371-3380.
Peine, K. J.; Bachelder, E. M.; Vangundy, Z.; Papenfuss, T.; Brackman, D. J.; Gallovic, M. D.; Schully, K.; Pesce, J.; Keane-Myers, A.; Ainslie, K. M. Efficient delivery of the toll-like receptor agonists polyinosinic: Polycytidylic acid and CpG to macrophages by acetalated dextran microparticles. Mol. Pharmaceutics 2013, 10, 2849-2857.
Luo, Z. C.; Wang, C.; Yi, H. Q.; Li, P.; Pan, H.; Liu, L. L.; Cai, L. T.; Ma, Y. F. Nanovaccine loaded with poly Ⅰ: C and SATA3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo. Biomaterials 2015, 38, 50-60.
Sarti, F.; Perera, G.; Hintzen, F.; Kotti, K.; Karageorgiou, V.; Kammona, O.; Kiparissides, C.; Bernkop-Schnurch, A. In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials 2011, 32, 4052-4057.
Hamdy, S.; Elamanchili, P.; Alshamsan, A.; Molavi, O.; Satou, T.; Samuel, J. Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D, L-lactic-co-glycolic acid) nanoparticles. J. Biomed. Mater. Res. 2007, 81A, 652-662.
Rizwan, S. B.; McBurney, W. T.; Young, K.; Hanley, T.; Boyd, B. J.; Rades, T.; Hook, S. Cubosomes containing the adjuvants imiquimod and monophosphoryl lipid A stimulate robust cellular and humoral immune responses. J. Control. Release 2013, 165, 16-21.
Lee, S.; Margolin, K. Cytokines in cancer immunotherapy. Cancers 2011, 3, 3856-3893.
Hu, X. M.; Wu, T. T.; Bao, Y. L.; Zhang, Z. P. Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense. J. Control. Release 2017, 256, 26-45.
Grace, M.; Youngster, S.; Gitlin, G.; Sydor, W.; Xie, L.; Westreich, L.; Jacobs, S.; Brassard, D.; Bausch, J.; Bordens, R. Structural and biologic characterization of PEGylated recombinant IFN-α 2b. J. Interferon Cytokine Res. 2001, 21, 1103-1115.
Bukowski, R.; Ernstoff, M. S.; Gore, M. E.; Nemunaitis, J. J.; Amato, R.; Gupta, S. K.; Tendler, C. L. PEGylated interferon alfa-2b treatment for patients with solid tumors: A phase Ⅰ/Ⅱ study. J. Clin. Oncol. 2002, 20, 3841-3849.
Vicent, M. J.; Duncan, R. Polymer conjugates: Nanosized medicines for treating cancer. Trends Biotechnol. 2006, 24, 39-47.
Dranoff, G. GM-CSF-based cancer vaccines. Immunol. Rev. 2002, 188, 147-154.
Nguyen, C. L.; Bui, J. T.; Demcheva, M.; Vournakis, J. N.; Cole, D. J.; Gillanders, W. E. Sustained release of granulocyte-macrophage colony-stimulating factor from a modular peptide-based cancer vaccine alters vaccine microenvironment and enhances the antigen-specific T-cell response. J. Immunother. 2001, 24, 420-429.
Liu, S. Y.; Wei, W.; Yue, H.; Ni, D. Z.; Yue, Z. G.; Wang, S.; Fu, Q.; Wang, Y. Q.; Ma, G. H.; Su, Z. G. Nanoparticles-based multi-adjuvant whole cell tumor vaccine for cancer immunotherapy. Biomaterials 2013, 34, 8291-8300.
Bencherif, S. A.; Warren Sands, R.; Ali, O. A.; Li, W. A.; Lewin, S. A.; Braschler, T. M.; Shih, T. Y.; Verbeke, C. S.; Bhatta, D.; Dranoff, G. et al. Injectable cryogel-based whole-cell cancer vaccines. Nat. Commun. 2015, 6, 7556.
Klinman, D. M.; Currie, D.; Gursel, I.; Verthelyi, D. Use of CpG oligodeoxynucleotides as immune adjuvants. Immunol. Rev. 2004, 199, 201-216.
Krieg, A. M. Immune effects and mechanisms of action of CpG motifs. Vaccine 2000, 19, 618-622.
Klinman, D. M. Immunotherapeutic uses of CpG oligodeoxy-nucleotides. Nat. Rev. Immunol. 2004, 4, 249-259.
Nikitczuk, K. P.; Schloss, R. S.; Yarmush, M. L.; Lattime, E. C. PLGA-polymer encapsulating tumor antigen and CpG DNA administered into the tumor microenvironment elicits a systemic antigen-specific IFN-γ response and enhances survival. J. Cancer Ther. 2013, 4, 280-290.
Kapadia, C. H.; Tian, S. M.; Perry, J. L.; Luft, J. C.; DeSimone, J. M. Reduction sensitive PEG hydrogels for codelivery of antigen and adjuvant to induce potent CTLs. Mol. Pharmaceutics 2016, 13, 3381-3394.
Ali, O. A.; Lewin, S. A.; Dranoff, G.; Mooney, D. J. Vaccines combined with immune checkpoint antibodies promote cytotoxic T-cell activity and tumor eradication. Cancer Immunol. Res. 2016, 4, 95-100.
Mueller, M.; Reichardt, W.; Koerner, J.; Groettrup, M. Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice. J. Control. Release 2012, 162, 159-166.
Erdoğar, N.; Iskit, A. B.; Eroğlu, H.; Sargon, M. F.; Mungan, N.; Bilensoy, E. Antitumor efficacy of bacillus calmette-guerin loaded cationic nanoparticles for intravesical immunotherapy of bladder tumor induced rat model. J. Nanosci. Nanotechnol. 2015, 15, 10156-10164.
Tsuji, S.; Matsumoto, M.; Takeuchi, O.; Akira, S.; Azuma, I.; Hayashi, A.; Toyoshima, K.; Seya, T. Maturation of human dendritic cells by cell wall skeleton of mycobacterium bovis bacillus calmette-guerin: Involvement of toll-like receptors. Infect. Immun. 2000, 68, 6883-6890.
Miyazaki, J.; Nishiyama, H.; Yano, I.; Nakaya, A.; Kohama, H.; Kawai, K.; Joraku, A.; Nakamura, T.; Harashima, H.; Akaza, H. The therapeutic effects of R8-liposome-BCG-CWS on BBN-induced rat urinary bladder carcinoma. Anticancer Res. 2011, 31, 2065-2071.
Nakamura, T.; Fukiage, M.; Higuchi, M.; Nakaya, A.; Yano, I.; Miyazaki, J.; Nishiyama, H.; Akaza, H.; Ito, T.; Hosokawa, H. et al. Nanoparticulation of BCG-CWS for application to bladder cancer therapy. J. Control. Release 2014, 176, 44-53.
Kershaw, M. H.; Westwood, J. A.; Darcy, P. K. Gene-engineered T cells for cancer therapy. Nat. Rev. Cancer 2013, 13, 525-541.
Littman, D. R. Releasing the brakes on cancer immunotherapy. Cell 2015, 162, 1186-1190.
Topalian, S. L.; Taube, J. M.; Anders, R. A.; Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 2016, 16, 275-287.
Sharma, R.; Di Dalmazi, G.; Caturegli, P. Exacerbation of autoimmune thyroiditis by CTLA-4 blockade: A role for IFN-γ-induced indoleamine 2, 3-dioxygenase. Thyroid 2016, 26, 1117-1124.
Rahimian, S.; Fransen, M. F.; Kleinovink, J. W.; Amidi, M.; Ossendorp, F.; Hennink, W. E. Polymeric microparticles for sustained and local delivery of antiCD40 and antiCTLA-4 in immunotherapy of cancer. Biomaterials 2015, 61, 33-40.
Zhang, L.; Wang, L. M.; Shahzad, K. A.; Xu, T.; Wan, X.; Pei, W. Y.; Shen, C. L. Paracrine release of IL-2 and anti-CTLA-4 enhances the ability of artificial polymer antigen-presenting cells to expand antigen-specific T cells and inhibit tumor growth in a mouse model. Cancer Immunol. Immunother. 2017, 66, 1229-1241.
Fife, B. T.; Pauken, K. E.; Eagar, T. N.; Obu, T.; Wu, J.; Tang, Q.; Azuma, M.; Krummel, M. F.; Bluestone, J. A. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat. Immunol. 2009, 10, 1185-1192.
Mahoney, K. M.; Rennert, P. D.; Freeman, G. J. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 2015, 14, 561-584.
Wang, C.; Ye, Y. Q.; Hochu, G. M.; Sadeghifar, H.; Gu, Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 2016, 16, 2334-2340.
Ye, Y. Q.; Wang, J. Q.; Hu, Q. Y.; Hochu, G. M.; Xin, H. L.; Wang, C.; Gu, Z. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano 2016, 10, 8956-8963.
Reynolds, A.; Leake, D.; Boese, Q.; Scaringe, S.; Marshall, W. S.; Khvorova, A. Rational siRNA design for RNA interference. Nat. Biotechnol. 2004, 22, 326-330.
Selvam, C.; Mutisya, D.; Prakash, S.; Ranganna, K.; Thilagavathi, R. Therapeutic potential of chemically modified siRNA: Recent trends. Chem. Biol. Drug Des. 2017, 90, 665-678.
Nishida, H.; Matsumoto, Y.; Kawana, K.; Christie, R. J.; Naito, M.; Kim, B. S.; Toh, K.; Min, H. S.; Yi, Y.; Matsumoto, Y. et al. Systemic delivery of siRNA by actively targeted polyion complex micelles for silencing the E6 and E7 human papillomavirus oncogenes. J. Control. Release 2016, 231, 29-37.
Sarett, S. M.; Werfel, T. A.; Chandra, I.; Jackson, M. A.; Kavanaugh, T. E.; Hattaway, M. E.; Giorgio, T. D.; Duvall, C. L. Hydrophobic interactions between polymeric carrier and palmitic acid-conjugated siRNA improve PEGylated polyplex stability and enhance in vivo pharmacokinetics and tumor gene silencing. Biomaterials 2016, 97, 122-132.
Ewe, A.; Höbel, S.; Heine, C.; Merz, L.; Kallendrusch, S.; Bechmann, I.; Merz, F.; Franke, H.; Aigner, A. Optimized polyethylenimine (PEI)-based nanoparticles for siRNA delivery, analyzed in vitro and in an ex vivo tumor tissue slice culture model. Drug Delivery Transl. Res. 2017, 7, 206-216.
Zhou, X. Y.; Zheng, Q. Q.; Wang, C. Y.; Xu, J. K.; Wu, J. P.; Kirk, T. B.; Ma, D.; Xue, W. Star-shaped amphiphilic hyperbranched polyglycerol conjugated with dendritic poly(L-lysine) for the codelivery of docetaxel and MMP-9 siRNA in cancer therapy. ACS Appl. Mater. Interface 2016, 8, 12609-12619.
Xu, L. Y.; Yeudall, W. A.; Yang, H. Folic acid-decorated polyamidoamine dendrimer exhibits high tumor uptake and sustained highly localized retention in solid tumors: Its utility for local siRNA delivery. Acta Biomater. 2017, 57, 251-261.
Kim, W. J.; Chang, C. -W.; Lee, M.; Kim, S. W. Efficient siRNA delivery using water soluble lipopolymer for anti-angiogenic gene therapy. J. Control. Release 2007, 118, 357-363.
Tamura, A.; Nagasaki, Y. Smart siRNA delivery systems based on polymeric nanoassemblies and nanoparticles. Nanomedicine 2010, 5, 1089-1102.
Egilmez, N. K.; Kilinc, M. O.; Gu, T.; Conway, T. F. Controlled-release particulate cytokine adjuvants for cancer therapy. Endocr. Metab. Immune Disord. : Drug Targets 2007, 7, 266-270.
Sabatos, C. A.; Doh, J.; Chakravarti, S.; Friedman, R. S.; Pandurangi, P. G.; Tooley, A. J.; Krummel, M. F. A synaptic basis for paracrine interleukin-2 signaling during homotypic T cell interaction. Immunity 2008, 29, 238-248.
Fadel, T. R.; Sharp, F. A.; Vudattu, N.; Ragheb, R.; Garyu, J.; Kim, D.; Hong, E. P.; Li, N.; Haller, G. L.; Pfefferle, L. D. et al. A carbon nanotube-polymer composite for T-cell therapy. Nat. Nanotechnol. 2014, 9, 639-647.
Park, J.; Wrzesinski, S. H.; Stern, E.; Look, M.; Criscione, J.; Ragheb, R.; Jay, S. M.; Demento, S. L.; Agawu, A.; Licona Limon, P. et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater. 2012, 11, 895-905.
Frick, S. U.; Domogalla, M. P.; Baier, G.; Wurm, F. R.; Mailäender, V.; Landfester, K.; Steinbrink, K. Interleukin-2 functionalized nanocapsules for T cell-based immunotherapy. ACS Nano 2016, 10, 9216-9226.
Egilmez, N. K.; Jong, Y. S.; Sabel, M. S.; Jacob, J. S.; Mathiowitz, E.; Bankert, R. B. In situ tumor vaccination with interleukin-12-encapsulated biodegradable microspheres: Induction of tumor regression and potent antitumor immunity. Cancer Res. 2000, 60, 3832-3837.
Kilinc, M. O.; Aulakh, K. S.; Nair, R. E.; Jones, S. A.; Alard, P.; Kosiewicz, M. M.; Egilmez, N. K. Reversing tumor immune suppression with intratumoral IL-12: Activation of tumor-associated T effector/memory cells, induction of T suppressor apoptosis, and infiltration of CD8+ T effectors. J. Immunol. 2006, 177, 6962-6973.
Zaharoff, D. A.; Hance, K. W.; Rogers, C. J.; Schlom, J.; Greiner, J. W. Intratumoral immunotherapy of established solid tumors with chitosan/IL-12. J. Immunother. 2010, 33, 697-705.
Shimizu, T.; Kishida, T.; Hasegawa, U.; Ueda, Y.; Imanishi, J.; Yamagishi, H.; Akiyoshi, K.; Otsuji, E.; Mazda, O. Nanogel DDS enables sustained release of IL-12 for tumor immunotherapy. Biochem. Biophys. Res. Commun. 2008, 367, 330-335.
Wang, Y.; Lin, Y. X.; Qiao, S. L.; An, H. W.; Ma, Y.; Qiao, Z. Y.; Rajapaksha, R. P.; Wang, H. Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment. Biomaterials 2017, 112, 153-163.
Ali, O. A.; Verbeke, C.; Johnson, C.; Sands, R. W.; Lewin, S. A.; White, D.; Doherty, E.; Dranoff, G.; Mooney, D. J. Identification of immune factors regulating antitumor immunity using polymeric vaccines with multiple adjuvants. Cancer Res. 2014, 74, 1670-1681.
Sonabend, A. M.; Velicu, S.; Ulasov, I. V.; Han, Y.; Tyler, B.; Brem, H.; Matar, M. M.; Fewell, J. G.; Anwer, K.; Lesniak, M. S. A safety and efficacy study of local delivery of interleukin-12 transgene by PPC polymer in a model of experimental glioma. Anti-Cancer Drugs 2008, 19, 133-142.
Kantoff, P. W.; Higano, C. S.; Shore, N. D.; Berger, E. R.; Small, E. J.; Penson, D. F.; Redfern, C. H.; Ferrari, A. C.; Dreicer, R.; Sims, R. B. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 2010, 363, 411-422.
Mak, I. W. Y.; Evaniew, N.; Ghert, M. Lost in translation: Animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 2014, 6, 114-118.