Graphical Abstract

Redox-responsive polymer-drug conjugate micelles are excellent nanoscale vehicles for self-immolative intracellular drug delivery. To covalently connect the polymer and drug, disulfide-bearing linkers, such as 3, 3'-dithiodipropionic acid (DDPA) and 4, 4'-dithiodibutyric acid (DDBA), are used. In this paper, we report the influence of linker length on the therapeutic outcome of redox-sensitive conjugate micelles. Curcumin was selected as the model drug and it was conjugated to a multivalent methoxy poly(ethylene glycol)-polylysine copolymer with DDPA or DDBA as the linker. The obtained two polymer-curcumin conjugates were amphiphilic and could self-assemble into micelles that have a hydrodynamic diameter less than 100 nm. The loading of curcumin in both micelles was above 20% (w/w). Irrespective of the linker type, micelle disassembly was observed due to the collapse of the disulfide bond in a reducing environment. However, the rate of curcumin release was much faster with the DDBA linker than with the DDPA linker as the side product was a 5-membered ring with a low ring strain. The linker length-induced variation of curcumin release kinetics caused a significant difference in the intracellular drug concentration and a higher cytotoxicity was witnessed in three model cell lines (HeLa, PC3, and 4T1) for the micelles with a DDBA linker compared to those containing a DDPA linker. As expected, this phenomenon was also observed in HeLa tumor-bearing nude mice in vivo. The current work highlights the significance of linker length in engineering redox-responsive on-demand delivery systems.
Hu, X. L.; Jing, X. B. Biodegradable amphiphilic polymerdrug conjugate micelles. Expert Opin. Drug Deliv. 2009, 6, 1079–1090.
Yang, R. L.; Zhang, S.; Kong, D. L.; Gao, X. L.; Zhao, Y. J.; Wang, Z. Biodegradable polymer-curcumin conjugate micelles enhance the loading and delivery of low-potency curcumin. Pharm. Res. 2012, 29, 3512–3525.
Lv, S. X.; Tang, Z. H.; Zhang, D. W.; Song, W. T.; Li, M. Q.; Lin, J.; Liu, H. Y.; Chen, X. S. Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel. J. Control. Release 2014, 194, 220–227.
Zhang, J. M.; Chen, R. E.; Fang, X. F.; Chen, F. Q.; Wang, Y. T.; Chen, M. W. Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles for enhanced delivery and antitumor efficacy of paclitaxel. Nano Res. 2015, 8, 201–218.
Peng, M. Y.; Qin, S. Y.; Jia, H. Z.; Zheng, D. W.; Rong, L.; Zhang, X. Z. Self-delivery of a peptide-based prodrug for tumor-targeting therapy. Nano Res. 2016, 9, 663–673.
Shen, W. J.; Luan, J. B.; Cao, L. P.; Sun, J.; Yu, L.; Ding, J. D. Thermogelling polymer-platinum(IV) conjugates for long-term delivery of cisplatin. Biomacromolecules 2015, 16, 105–115.
Sui, J. H.; Cui, Y.; Cai, H. X.; Bian, S. Q.; Xu, Z. Y.; Zhou, L.; Sun, Y.; Liang, J.; Fan, Y. J.; Zhang, X. D. Synergistic chemotherapeutic effect of sorafenib-loaded pullulan-Dox conjugate nanoparticles against murine breast carcinoma. Nanoscale 2017, 9, 2755–2767.
Yu, Q. S.; Wei, Z. K.; Shi, J. Y.; Guan, S. L.; Du, N.; Shen, T.; Tang, H.; Jia, B.; Wang, F.; Gan, Z. H. Polymerdoxorubicin conjugate micelles based on poly(ethylene glycol) and poly(N-(2-hydroxypropyl) methacrylamide): Effect of negative charge and molecular weight on biodistribution and blood clearance. Biomacromolecules 2015, 16, 2645–2655.
Gao, M.; Chen, C.; Fan, A. P.; Zhang, J.; Kong, D. L.; Wang, Z.; Zhao, Y. J. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers. Nanotechnology 2015, 26, 275101.
Cao, Y. W.; Gao, M.; Chen, C.; Fan, A. P.; Zhang, J.; Kong, D. L.; Wang, Z.; Peer, D.; Zhao, Y. J. Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery. Nanotechnology 2015, 26, 115101.
Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.
Fleige, E.; Quadir, M. A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Deliv. Rev 2012, 64, 866–884.
Riber, C. F.; Smith Anton, A. A.; Zelikin, A. N. Selfimmolative linkers literally bridge disulfide chemistry and the realm of thiol-free drugs. Adv. Healthc. Mater. 2015, 4, 1887–1890.
Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev. Drug Discov. 2014, 13, 813–827.
Wang, Z.; Chen, C.; Zhang, Q.; Gao, M.; Zhang, J.; Kong, D. L.; Zhao, Y. J. Tuning the architecture of polymeric conjugate to mediate intracellular delivery of pleiotropic curcumin. Eur. J. Pharm. Biopharm. 2015, 90, 53–62.
Xiao, W. W.; Suby, N.; Xiao, K.; Lin, T. Y.; Al Awwad, N.; Lam, K. S.; Li, Y. P. Extremely long tumor retention, multiresponsive boronate crosslinked micelles with superior therapeutic efficacy for ovarian cancer. J. Control. Release 2017, 264, 169–179.
Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126, 187–204.
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.
Such, G. K.; Yan, Y.; Johnston, A. P. R.; Gunawan, S. T.; Caruso, F. Interfacing materials science and biology for drug carrier design. Adv. Mater. 2015, 27, 2278–2297.
Cheng, R.; Meng, F. H.; Deng, C.; Zhong, Z. Y. Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today 2015, 10, 656–670.
Zhu, Y. Q.; Zhang, J.; Meng, F. H.; Deng, C.; Cheng, R.; Feijen, J.; Zhong, Z. Y. cRGD-functionalized reductionsensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. J. Control. Release 2016, 233, 29–38.
Zhong, P.; Zhang, J.; Deng, C.; Cheng, R.; Meng, F. H.; Zhong, Z. Y. Glutathione-sensitive hyaluronic acid-SSmertansine prodrug with a high drug content: Facile synthesis and targeted breast tumor therapy. Biomacromolecules 2016, 17, 3602–3608.
Qiu, J.; Cheng, R.; Zhang, J.; Sun, H. L.; Deng, C.; Meng, F. H.; Zhong, Z. Y. Glutathione-sensitive hyaluronic acidmercaptopurine prodrug linked via carbonyl vinyl sulfide: A robust and CD44-targeted nanomedicine for leukemia. Biomacromolecules 2017, 18, 3207–3214.
Lu, H.; Wang, J.; Song, Z. Y.; Yin, L. C.; Zhang, Y. F.; Tang, H. Y.; Tu, C. L.; Lin, Y.; Cheng, J. J. Recent advances in amino acid ncarboxyanhydrides and synthetic polypeptides: Chemistry, self-assembly and biological applications. Chem. Commun. 2014, 50, 139–155.
Kricheldorf, H. R. Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew. Chem., Int. Ed. 2006, 45, 5752–5784.
Deming, T. J. Synthesis of side-chain modified polypeptides. Chem. Rev. 2016, 116, 786–808.
Gao, M.; Deng, J.; Chu, H. Y.; Tang, Y.; Wang, Z.; Zhao, Y. J.; Li, G. H. Stereoselective stabilization of polymeric vitamin E conjugate micelles. Biomacromolecules 2017, 18, 4349–4356.
Chen, C.; Tao, R.; Ding, D.; Kong, D. L.; Fan, A. P.; Wang, Z.; Zhao, Y. J. Ratiometric co-delivery of multiple chemodrugs in a single nanocarrier. Eur. J. Pharm. Sci. 2017, 107, 16–23.
Li, H. Y.; Li, M.; Chen, C.; Fan, A. P.; Kong, D. L.; Wang, Z.; Zhao, Y. J. On-demand combinational delivery of curcumin and doxorubicin via a pH-labile micellar nanocarrier. Int. J. Pharm. 2015, 495, 572–578.
Dong, X. P.; Guo, X. L.; Liu, G. Q.; Fan, A. P.; Wang, Z.; Zhao, Y. J. When self-assembly meets topology: An enhanced micelle stability. Chem. Commun. 2017, 53, 3822–3825.
Torchilin, V. P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 2007, 24, 1–16.
Shi, Y.; Lammers, T.; Storm, G.; Hennink, W. E. Physicochemical strategies to enhance stability and drug retention of polymeric micelles for tumor-targeted drug delivery. Macromol. Biosci. 2017, 17, 1660160.
Park, K. Facing the truth about nanotechnology in drug delivery. ACS Nano 2013, 7, 7442–7447.
Lv, S. X.; Wu, Y. C.; Cai, K. M.; He, H.; Li, Y. J.; Lan, M.; Chen, X. S.; Cheng, J. J.; Yin, L. C. High drug loading and sub-quantitative loading efficiency of polymeric micelles driven by donor-receptor coordination interactions. J. Am. Chem. Soc. 2018, 140, 1235–1238.
Xin, K. T.; Li, M.; Lu, D.; Meng, X.; Deng, J.; Kong, D. L.; Ding, D.; Wang, Z.; Zhao, Y. J. Bioinspired coordination micelles integrating high stability, triggered cargo release, and magnetic resonance imaging. ACS Appl. Mater. Interfaces 2017, 9, 80–91.
Owen, S. C.; Chan, D. P. Y.; Shoichet, M. S. Polymeric micelle stability. Nano Today 2012, 7, 53–65.
Maeda, H. Macromolecular therapeutics in cancer treatment: The EPR Effect and beyond. J. Control. Release 2012, 164, 138–144.
Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.
Burns, J. A.; Butler, J. C.; Moran, J.; Whitesides, G. M. Selective reduction of disulfides by tris(2-carboxyethyl)phosphine. J. Org. Chem. 1991, 56, 2648–2650.
Fava, A.; Iliceto, A.; Camera, E. Kinetics of the thiol-disulfide exchange. J. Am. Chem. Soc. 1957, 79, 833–838.
Wang, X.; Li, J.; Yan, Q.; Chen, Y.; Fan, A.; Wang, Z.; Zhao, Y. In situ probing intracellular drug release from redox-responsive micelles by united FRET and AIE. Macromol. Biosci. 2018, 18, 1700339.
Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.
Li, X. D.; Gao, M.; Xin, K. T.; Zhang, L.; Ding, D.; Kong, D. L.; Wang, Z.; Shi, Y.; Kiessling, F.; Lammers, T. et al. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. J. Control. Release 2017, 260, 12–21.
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J. M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018, 9, 1410.
Shin, D. H.; Tam, Y. T.; Kwon, G. S. Polymeric micelle nanocarriers in cancer research. Front. Chem. Sci. Eng. 2016, 10, 348–359.
Wang, Y. W.; Grainger, D. W. Barriers to advancing nanotechnology to better improve and translate nanomedicines. Front. Chem. Sci. Eng. 2014, 8, 265–275.
Chen, C.; Zhao, J.; Gao, M.; Meng, X.; Fan, A. P.; Wang, Z.; Zhao, Y. J. Photo-triggered micelles: Simultaneous activation and release of microtubule inhibitors for on-demand chemotherapy. Biomater. Sci. 2018, 6, 511–518.