Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Self-immolative micellar drug delivery: The linker matters

Xuan Meng1,§Min Gao1,§Jian Deng1Di Lu1Aiping Fan1Dan Ding2,3Deling Kong2,3Zheng Wang1Yanjun Zhao1()
School of Pharmaceutical Science & TechnologyTianjin Key Laboratory for Modern Drug Delivery & High Efficiency and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300072China
State Key Laboratory of Medicinal Chemical Biology (Nankai University)Tianjin300071China
Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life Sciences and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjin300071China

§Xuan Meng and Min Gao contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Redox-responsive polymer-drug conjugate micelles are excellent nanoscale vehicles for self-immolative intracellular drug delivery. To covalently connect the polymer and drug, disulfide-bearing linkers, such as 3, 3'-dithiodipropionic acid (DDPA) and 4, 4'-dithiodibutyric acid (DDBA), are used. In this paper, we report the influence of linker length on the therapeutic outcome of redox-sensitive conjugate micelles. Curcumin was selected as the model drug and it was conjugated to a multivalent methoxy poly(ethylene glycol)-polylysine copolymer with DDPA or DDBA as the linker. The obtained two polymer-curcumin conjugates were amphiphilic and could self-assemble into micelles that have a hydrodynamic diameter less than 100 nm. The loading of curcumin in both micelles was above 20% (w/w). Irrespective of the linker type, micelle disassembly was observed due to the collapse of the disulfide bond in a reducing environment. However, the rate of curcumin release was much faster with the DDBA linker than with the DDPA linker as the side product was a 5-membered ring with a low ring strain. The linker length-induced variation of curcumin release kinetics caused a significant difference in the intracellular drug concentration and a higher cytotoxicity was witnessed in three model cell lines (HeLa, PC3, and 4T1) for the micelles with a DDBA linker compared to those containing a DDPA linker. As expected, this phenomenon was also observed in HeLa tumor-bearing nude mice in vivo. The current work highlights the significance of linker length in engineering redox-responsive on-demand delivery systems.

Electronic Supplementary Material

Download File(s)
12274_2018_2134_MOESM1_ESM.pdf (1.7 MB)

References

1

Hu, X. L.; Jing, X. B. Biodegradable amphiphilic polymerdrug conjugate micelles. Expert Opin. Drug Deliv. 2009, 6, 1079–1090.

2

Yang, R. L.; Zhang, S.; Kong, D. L.; Gao, X. L.; Zhao, Y. J.; Wang, Z. Biodegradable polymer-curcumin conjugate micelles enhance the loading and delivery of low-potency curcumin. Pharm. Res. 2012, 29, 3512–3525.

3

Lv, S. X.; Tang, Z. H.; Zhang, D. W.; Song, W. T.; Li, M. Q.; Lin, J.; Liu, H. Y.; Chen, X. S. Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel. J. Control. Release 2014, 194, 220–227.

4

Zhang, J. M.; Chen, R. E.; Fang, X. F.; Chen, F. Q.; Wang, Y. T.; Chen, M. W. Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles for enhanced delivery and antitumor efficacy of paclitaxel. Nano Res. 2015, 8, 201–218.

5

Peng, M. Y.; Qin, S. Y.; Jia, H. Z.; Zheng, D. W.; Rong, L.; Zhang, X. Z. Self-delivery of a peptide-based prodrug for tumor-targeting therapy. Nano Res. 2016, 9, 663–673.

6

Shen, W. J.; Luan, J. B.; Cao, L. P.; Sun, J.; Yu, L.; Ding, J. D. Thermogelling polymer-platinum(IV) conjugates for long-term delivery of cisplatin. Biomacromolecules 2015, 16, 105–115.

7

Sui, J. H.; Cui, Y.; Cai, H. X.; Bian, S. Q.; Xu, Z. Y.; Zhou, L.; Sun, Y.; Liang, J.; Fan, Y. J.; Zhang, X. D. Synergistic chemotherapeutic effect of sorafenib-loaded pullulan-Dox conjugate nanoparticles against murine breast carcinoma. Nanoscale 2017, 9, 2755–2767.

8

Yu, Q. S.; Wei, Z. K.; Shi, J. Y.; Guan, S. L.; Du, N.; Shen, T.; Tang, H.; Jia, B.; Wang, F.; Gan, Z. H. Polymerdoxorubicin conjugate micelles based on poly(ethylene glycol) and poly(N-(2-hydroxypropyl) methacrylamide): Effect of negative charge and molecular weight on biodistribution and blood clearance. Biomacromolecules 2015, 16, 2645–2655.

9

Gao, M.; Chen, C.; Fan, A. P.; Zhang, J.; Kong, D. L.; Wang, Z.; Zhao, Y. J. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers. Nanotechnology 2015, 26, 275101.

10

Cao, Y. W.; Gao, M.; Chen, C.; Fan, A. P.; Zhang, J.; Kong, D. L.; Wang, Z.; Peer, D.; Zhao, Y. J. Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery. Nanotechnology 2015, 26, 115101.

11

Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.

12

Fleige, E.; Quadir, M. A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Deliv. Rev 2012, 64, 866–884.

13

Riber, C. F.; Smith Anton, A. A.; Zelikin, A. N. Selfimmolative linkers literally bridge disulfide chemistry and the realm of thiol-free drugs. Adv. Healthc. Mater. 2015, 4, 1887–1890.

14

Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev. Drug Discov. 2014, 13, 813–827.

15

Wang, Z.; Chen, C.; Zhang, Q.; Gao, M.; Zhang, J.; Kong, D. L.; Zhao, Y. J. Tuning the architecture of polymeric conjugate to mediate intracellular delivery of pleiotropic curcumin. Eur. J. Pharm. Biopharm. 2015, 90, 53–62.

16

Xiao, W. W.; Suby, N.; Xiao, K.; Lin, T. Y.; Al Awwad, N.; Lam, K. S.; Li, Y. P. Extremely long tumor retention, multiresponsive boronate crosslinked micelles with superior therapeutic efficacy for ovarian cancer. J. Control. Release 2017, 264, 169–179.

17

Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126, 187–204.

18

Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

19

Such, G. K.; Yan, Y.; Johnston, A. P. R.; Gunawan, S. T.; Caruso, F. Interfacing materials science and biology for drug carrier design. Adv. Mater. 2015, 27, 2278–2297.

20

Cheng, R.; Meng, F. H.; Deng, C.; Zhong, Z. Y. Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today 2015, 10, 656–670.

21

Zhu, Y. Q.; Zhang, J.; Meng, F. H.; Deng, C.; Cheng, R.; Feijen, J.; Zhong, Z. Y. cRGD-functionalized reductionsensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. J. Control. Release 2016, 233, 29–38.

22

Zhong, P.; Zhang, J.; Deng, C.; Cheng, R.; Meng, F. H.; Zhong, Z. Y. Glutathione-sensitive hyaluronic acid-SSmertansine prodrug with a high drug content: Facile synthesis and targeted breast tumor therapy. Biomacromolecules 2016, 17, 3602–3608.

23

Qiu, J.; Cheng, R.; Zhang, J.; Sun, H. L.; Deng, C.; Meng, F. H.; Zhong, Z. Y. Glutathione-sensitive hyaluronic acidmercaptopurine prodrug linked via carbonyl vinyl sulfide: A robust and CD44-targeted nanomedicine for leukemia. Biomacromolecules 2017, 18, 3207–3214.

24

Lu, H.; Wang, J.; Song, Z. Y.; Yin, L. C.; Zhang, Y. F.; Tang, H. Y.; Tu, C. L.; Lin, Y.; Cheng, J. J. Recent advances in amino acid ncarboxyanhydrides and synthetic polypeptides: Chemistry, self-assembly and biological applications. Chem. Commun. 2014, 50, 139–155.

25

Kricheldorf, H. R. Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew. Chem., Int. Ed. 2006, 45, 5752–5784.

26

Deming, T. J. Synthesis of side-chain modified polypeptides. Chem. Rev. 2016, 116, 786–808.

27

Gao, M.; Deng, J.; Chu, H. Y.; Tang, Y.; Wang, Z.; Zhao, Y. J.; Li, G. H. Stereoselective stabilization of polymeric vitamin E conjugate micelles. Biomacromolecules 2017, 18, 4349–4356.

28

Chen, C.; Tao, R.; Ding, D.; Kong, D. L.; Fan, A. P.; Wang, Z.; Zhao, Y. J. Ratiometric co-delivery of multiple chemodrugs in a single nanocarrier. Eur. J. Pharm. Sci. 2017, 107, 16–23.

29

Li, H. Y.; Li, M.; Chen, C.; Fan, A. P.; Kong, D. L.; Wang, Z.; Zhao, Y. J. On-demand combinational delivery of curcumin and doxorubicin via a pH-labile micellar nanocarrier. Int. J. Pharm. 2015, 495, 572–578.

30

Dong, X. P.; Guo, X. L.; Liu, G. Q.; Fan, A. P.; Wang, Z.; Zhao, Y. J. When self-assembly meets topology: An enhanced micelle stability. Chem. Commun. 2017, 53, 3822–3825.

31

Torchilin, V. P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 2007, 24, 1–16.

32

Shi, Y.; Lammers, T.; Storm, G.; Hennink, W. E. Physicochemical strategies to enhance stability and drug retention of polymeric micelles for tumor-targeted drug delivery. Macromol. Biosci. 2017, 17, 1660160.

33

Park, K. Facing the truth about nanotechnology in drug delivery. ACS Nano 2013, 7, 7442–7447.

34

Lv, S. X.; Wu, Y. C.; Cai, K. M.; He, H.; Li, Y. J.; Lan, M.; Chen, X. S.; Cheng, J. J.; Yin, L. C. High drug loading and sub-quantitative loading efficiency of polymeric micelles driven by donor-receptor coordination interactions. J. Am. Chem. Soc. 2018, 140, 1235–1238.

35

Xin, K. T.; Li, M.; Lu, D.; Meng, X.; Deng, J.; Kong, D. L.; Ding, D.; Wang, Z.; Zhao, Y. J. Bioinspired coordination micelles integrating high stability, triggered cargo release, and magnetic resonance imaging. ACS Appl. Mater. Interfaces 2017, 9, 80–91.

36

Owen, S. C.; Chan, D. P. Y.; Shoichet, M. S. Polymeric micelle stability. Nano Today 2012, 7, 53–65.

37

Maeda, H. Macromolecular therapeutics in cancer treatment: The EPR Effect and beyond. J. Control. Release 2012, 164, 138–144.

38

Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

39

Burns, J. A.; Butler, J. C.; Moran, J.; Whitesides, G. M. Selective reduction of disulfides by tris(2-carboxyethyl)phosphine. J. Org. Chem. 1991, 56, 2648–2650.

40

Fava, A.; Iliceto, A.; Camera, E. Kinetics of the thiol-disulfide exchange. J. Am. Chem. Soc. 1957, 79, 833–838.

41

Wang, X.; Li, J.; Yan, Q.; Chen, Y.; Fan, A.; Wang, Z.; Zhao, Y. In situ probing intracellular drug release from redox-responsive micelles by united FRET and AIE. Macromol. Biosci. 2018, 18, 1700339.

42

Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.

43

Li, X. D.; Gao, M.; Xin, K. T.; Zhang, L.; Ding, D.; Kong, D. L.; Wang, Z.; Shi, Y.; Kiessling, F.; Lammers, T. et al. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. J. Control. Release 2017, 260, 12–21.

44

Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J. M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018, 9, 1410.

45

Shin, D. H.; Tam, Y. T.; Kwon, G. S. Polymeric micelle nanocarriers in cancer research. Front. Chem. Sci. Eng. 2016, 10, 348–359.

46

Wang, Y. W.; Grainger, D. W. Barriers to advancing nanotechnology to better improve and translate nanomedicines. Front. Chem. Sci. Eng. 2014, 8, 265–275.

47

Chen, C.; Zhao, J.; Gao, M.; Meng, X.; Fan, A. P.; Wang, Z.; Zhao, Y. J. Photo-triggered micelles: Simultaneous activation and release of microtubule inhibitors for on-demand chemotherapy. Biomater. Sci. 2018, 6, 511–518.

Nano Research
Pages 6177-6189
Cite this article:
Meng X, Gao M, Deng J, et al. Self-immolative micellar drug delivery: The linker matters. Nano Research, 2018, 11(12): 6177-6189. https://doi.org/10.1007/s12274-018-2134-5
Metrics & Citations  
Article History
Copyright
Return