AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tuning the morphology of chevron-type graphene nanoribbons by choice of annealing temperature

Yun Cao1,§Jing Qi1,§Yan-Fang Zhang1,§Li Huang1Qi Zheng1Xiao Lin1Zhihai Cheng2Yu-Yang Zhang1,3Xinliang Feng4,5( )Shixuan Du1( )Sokrates T. Pantelides1,3Hong-Jun Gao1
Institute of Physics & University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
Department of PhysicsRenmin University of ChinaBeijing100872China
Department of Physics and Astronomy and Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleTennessee37235USA
Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food ChemistryTechnische Universität Dresden, D-01069, DresdenGermany
School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China

§Yun Cao, Jing Qi, and Yan-Fang Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Bottom-up synthesis of graphene nanoribbons (GNRs) by surface-assisted polymerization and cyclodehydrogenation of specifically designed precursor monomers has been shown to yield precise edges and doping. Here we use a precursor monomer containing sulfur atoms to fabricate nanostructures on a Au(111) surface at different annealing temperatures. The nanostructures have distinct configurations, varying from sulfur-doped polymers to sulfur-doped chevron-type GNRs (CGNRs) and, finally, pristine graphene nanoribbons with specific edges of periodic five-member carbon rings. Non-contact atomic force microscopy provides clear evidence for the cleavage of C–S bonds and formation of pristine CGNRs at elevated annealing temperatures. First-principles calculations show that the CGNRs exhibit negative differential resistance.

References

1

Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

2

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

3

Lv, R. T.; Terrones, M. Towards new graphene materials: Doped graphene sheets and nanoribbons. Mater. Lett. 2012, 78, 209–218.

4

Bronner, C.; Stremlau, S.; Gille, M.; Brauβe, F.; Haase, A.; Hecht, S.; Tegeder, P. Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem., Int. Ed. 2013, 52, 4422–4425.

5

Cai, J. M.; Pignedoli, C. A.; Talirz, L.; Ruffieux, P.; Söde, H.; Liang, L. B.; Meunier, V.; Berger, R.; Li, R. J.; Feng, X. L. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 2014, 9, 896–900.

6

Kawai, S.; Saito, S.; Osumi, S.; Yamaguchi, S.; Foster, A. S.; Spijker, P.; Meyer, E. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 2015, 6, 8098.

7

Zhang, Y.; Zhang, Y. F.; Li, G.; Lu, J. C.; Lin, X.; Du, S. X.; Berger, R.; Feng, X. L.; Müllen, K.; Gao, H. J. Direct visualization of atomically precise nitrogen-doped gravphene nanoribbons. Appl. Phys. Lett. 2014, 105, 023101.

8

Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

9

Wang, X. R.; Dai, H. J. Etching and narrowing of graphene from the edges. Nat. Chem. 2010, 2, 661–665.

10

Han, P.; Akagi, K.; Canova, F. F.; Mutoh, H.; Shiraki, S.; Iwaya, K.; Weiss, P. S.; Asao, N.; Hitosugi, T. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nan. 2014, 8, 9181–9187.

11

Yang, W. L.; Lucotti, A.; Tommasini, M.; Chalifoux, W. A. Bottom-up synthesis of soluble and narrow graphene nanoribbons using alkyne benzannulations. J. Am. Chem. Soc. 2016, 138, 9137–9144.

12

Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Natur. 2010, 466, 470–473.

13

Chen, Y. C.; de Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nan. 2013, 7, 6123–6128.

14

Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Natur. 2016, 531, 489–492.

15

Nguyen, G. D.; Tom, F. M.; Cao, T.; Pedramrazi, Z.; Chen, C.; Rizzo, D. J.; Joshi, T.; Bronner, C.; Chen, Y. C.; Favaro, M. et al. Bottom-up synthesis of N = 13 sulfur-doped graphene nanoribbons. J. Phys. Chem. . 2016, 120, 2684–2687.

16

Zhang, Y. F.; Zhang, Y.; Li, G.; Lu, J. C.; Que, Y. D.; Chen, H.; Berger, R.; Feng, X. L.; Müllen, K.; Lin, X. et al. Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps. Nano Res. 2017, 10, 3377–3384.

17

Wang, L. D.; He, W.; Yu, Z. K. Transition-metal mediated carbon-sulfur bond activation and transformations. Chem. Soc. Rev. 2013, 42, 599–621.

18

Zhong, C. J.; Porter, M. D. Evidence for carbon-sulfur bond cleavage in spontaneously adsorbed organosulfide-based monolayers at gold. J. Am. Chem. Soc. 1994, 116, 11616–11617.

19

Kundu, S.; Brennessel, W. W.; Jones, W. D. C–S bond activation of thioesters using platinum(0). Organometallic. 2011, 30, 5147–5154.

20

McWhorter, A. L.; Foyt, A. G. Bulk gaas negative conductance amplifiers. Appl. Phys. Lett. 1966, 9, 300–302.

21

Broekaert, T. P. E.; Brar, B.; van der Wagt, J. P. A.; Seabaugh, A. C.; Morris, F. J.; Moise, T. S.; Beam, E. A.; Frazier, G. A. A monolithic 4-bit 2-Gsps resonant tunneling analog-to-digital converter. IEEE J. Solid-St. Circ. 1998, 33, 1342–1349.

22

Brown, E. R.; Söderstrom, J. R.; Parker, C. D.; Mahoney, L. J.; Molvar, K. M.; McGill, T. C. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes. Appl. Phys. Lett. 1991, 58, 2291–2293.

23

Hua, R. M.; Takeda, H.; Onozawa, S. Y.; Abe, Y.; Tanaka, M. Palladium-catalyzed thioesterification of alkynes with O-methyl S-phenyl thiocarbonate. J. Am. Chem. Soc. 2001, 123, 2899–2900.

24

Pavliček, N.; Majzik, Z.; Collazos, S.; Meyer, G.; Pérez, D.; Guitián, E.; Peña, D.; Gross, L. Generation and characterization of a meta-aryne on Cu and NaCl surfaces. ACS Nan. 2017, 11, 10768–10773.

25

Schuler, B.; Fatayer, S.; Mohn, F.; Moll, N.; Pavliček, N.; Meyer, G.; Peña, D.; Gross, L. Reversible bergman cyclization by atomic manipulation. Nat. Chem. 2016, 8, 220–224.

26

Ren, H.; Li, Q. X.; Luo, Y.; Yang, J. L. Graphene nanoribbon as a negative differential resistance device. Appl. Phys. Lett. 2009, 94, 173110.

27

Nguyen, V. H.; Bournel, A.; Dollfus, P. Large peak-to-valley ratio of negative-differential-conductance in graphene p-n junctions. J. Appl. Phys. 2011, 109, 093706.

28

Galperin, M.; Nitzan, A.; Ratner, M. A. The non-linear response of molecular junctions: The polaron model revisited. J. Phys. : Condens. Matte. 2008, 20, 374107.

29

Migliore, A.; Nitzan, A. Irreversibility and hysteresis in redox molecular conduction junctions. J. Am. Chem. Soc. 2013, 135, 9420–9432.

30

Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, UK, 2005.

31

Bartels, L.; Meyer, G.; Rieder, K. H. Controlled vertical manipulation of single COmolecules with the scanning tunneling microscope: A route to chemical contrast. Appl. Phys. Lett. 1997, 71, 213–215.

32

Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Scienc. 2009, 325, 1110–1114.

33

Perdew, J. P.; Zunger, A. Self-interaction correction to densityfunctional approximations for many-electron systems. Phys. Rev. . 1981, 23, 5048–5079.

34

Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

35

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. . 1996, 54, 11169–11186.

36

Taylor, J.; Guo, H.; Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. . 2001, 63, 245407.

37

Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. . 2002, 65, 165401.

38

Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. : Condens. Matte. 2002, 14, 2745–2779.

Nano Research
Pages 6190-6196
Cite this article:
Cao Y, Qi J, Zhang Y-F, et al. Tuning the morphology of chevron-type graphene nanoribbons by choice of annealing temperature. Nano Research, 2018, 11(12): 6190-6196. https://doi.org/10.1007/s12274-018-2136-3

761

Views

23

Crossref

N/A

Web of Science

26

Scopus

5

CSCD

Altmetrics

Received: 28 April 2018
Revised: 04 June 2018
Accepted: 20 June 2018
Published: 19 July 2018
© Tsinghua University Press and Springer‐Verlag GmbH Germany, part of Springer Nature 2018
Return