Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Bottom-up synthesis of graphene nanoribbons (GNRs) by surface-assisted polymerization and cyclodehydrogenation of specifically designed precursor monomers has been shown to yield precise edges and doping. Here we use a precursor monomer containing sulfur atoms to fabricate nanostructures on a Au(111) surface at different annealing temperatures. The nanostructures have distinct configurations, varying from sulfur-doped polymers to sulfur-doped chevron-type GNRs (CGNRs) and, finally, pristine graphene nanoribbons with specific edges of periodic five-member carbon rings. Non-contact atomic force microscopy provides clear evidence for the cleavage of C–S bonds and formation of pristine CGNRs at elevated annealing temperatures. First-principles calculations show that the CGNRs exhibit negative differential resistance.
Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.
Lv, R. T.; Terrones, M. Towards new graphene materials: Doped graphene sheets and nanoribbons. Mater. Lett. 2012, 78, 209–218.
Bronner, C.; Stremlau, S.; Gille, M.; Brauβe, F.; Haase, A.; Hecht, S.; Tegeder, P. Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem., Int. Ed. 2013, 52, 4422–4425.
Cai, J. M.; Pignedoli, C. A.; Talirz, L.; Ruffieux, P.; Söde, H.; Liang, L. B.; Meunier, V.; Berger, R.; Li, R. J.; Feng, X. L. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 2014, 9, 896–900.
Kawai, S.; Saito, S.; Osumi, S.; Yamaguchi, S.; Foster, A. S.; Spijker, P.; Meyer, E. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 2015, 6, 8098.
Zhang, Y.; Zhang, Y. F.; Li, G.; Lu, J. C.; Lin, X.; Du, S. X.; Berger, R.; Feng, X. L.; Müllen, K.; Gao, H. J. Direct visualization of atomically precise nitrogen-doped gravphene nanoribbons. Appl. Phys. Lett. 2014, 105, 023101.
Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.
Wang, X. R.; Dai, H. J. Etching and narrowing of graphene from the edges. Nat. Chem. 2010, 2, 661–665.
Han, P.; Akagi, K.; Canova, F. F.; Mutoh, H.; Shiraki, S.; Iwaya, K.; Weiss, P. S.; Asao, N.; Hitosugi, T. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nan. 2014, 8, 9181–9187.
Yang, W. L.; Lucotti, A.; Tommasini, M.; Chalifoux, W. A. Bottom-up synthesis of soluble and narrow graphene nanoribbons using alkyne benzannulations. J. Am. Chem. Soc. 2016, 138, 9137–9144.
Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Natur. 2010, 466, 470–473.
Chen, Y. C.; de Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nan. 2013, 7, 6123–6128.
Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Natur. 2016, 531, 489–492.
Nguyen, G. D.; Tom, F. M.; Cao, T.; Pedramrazi, Z.; Chen, C.; Rizzo, D. J.; Joshi, T.; Bronner, C.; Chen, Y. C.; Favaro, M. et al. Bottom-up synthesis of N = 13 sulfur-doped graphene nanoribbons. J. Phys. Chem. . 2016, 120, 2684–2687.
Zhang, Y. F.; Zhang, Y.; Li, G.; Lu, J. C.; Que, Y. D.; Chen, H.; Berger, R.; Feng, X. L.; Müllen, K.; Lin, X. et al. Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps. Nano Res. 2017, 10, 3377–3384.
Wang, L. D.; He, W.; Yu, Z. K. Transition-metal mediated carbon-sulfur bond activation and transformations. Chem. Soc. Rev. 2013, 42, 599–621.
Zhong, C. J.; Porter, M. D. Evidence for carbon-sulfur bond cleavage in spontaneously adsorbed organosulfide-based monolayers at gold. J. Am. Chem. Soc. 1994, 116, 11616–11617.
Kundu, S.; Brennessel, W. W.; Jones, W. D. C–S bond activation of thioesters using platinum(0). Organometallic. 2011, 30, 5147–5154.
McWhorter, A. L.; Foyt, A. G. Bulk gaas negative conductance amplifiers. Appl. Phys. Lett. 1966, 9, 300–302.
Broekaert, T. P. E.; Brar, B.; van der Wagt, J. P. A.; Seabaugh, A. C.; Morris, F. J.; Moise, T. S.; Beam, E. A.; Frazier, G. A. A monolithic 4-bit 2-Gsps resonant tunneling analog-to-digital converter. IEEE J. Solid-St. Circ. 1998, 33, 1342–1349.
Brown, E. R.; Söderstrom, J. R.; Parker, C. D.; Mahoney, L. J.; Molvar, K. M.; McGill, T. C. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes. Appl. Phys. Lett. 1991, 58, 2291–2293.
Hua, R. M.; Takeda, H.; Onozawa, S. Y.; Abe, Y.; Tanaka, M. Palladium-catalyzed thioesterification of alkynes with O-methyl S-phenyl thiocarbonate. J. Am. Chem. Soc. 2001, 123, 2899–2900.
Pavliček, N.; Majzik, Z.; Collazos, S.; Meyer, G.; Pérez, D.; Guitián, E.; Peña, D.; Gross, L. Generation and characterization of a meta-aryne on Cu and NaCl surfaces. ACS Nan. 2017, 11, 10768–10773.
Schuler, B.; Fatayer, S.; Mohn, F.; Moll, N.; Pavliček, N.; Meyer, G.; Peña, D.; Gross, L. Reversible bergman cyclization by atomic manipulation. Nat. Chem. 2016, 8, 220–224.
Ren, H.; Li, Q. X.; Luo, Y.; Yang, J. L. Graphene nanoribbon as a negative differential resistance device. Appl. Phys. Lett. 2009, 94, 173110.
Nguyen, V. H.; Bournel, A.; Dollfus, P. Large peak-to-valley ratio of negative-differential-conductance in graphene p-n junctions. J. Appl. Phys. 2011, 109, 093706.
Galperin, M.; Nitzan, A.; Ratner, M. A. The non-linear response of molecular junctions: The polaron model revisited. J. Phys. : Condens. Matte. 2008, 20, 374107.
Migliore, A.; Nitzan, A. Irreversibility and hysteresis in redox molecular conduction junctions. J. Am. Chem. Soc. 2013, 135, 9420–9432.
Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, UK, 2005.
Bartels, L.; Meyer, G.; Rieder, K. H. Controlled vertical manipulation of single COmolecules with the scanning tunneling microscope: A route to chemical contrast. Appl. Phys. Lett. 1997, 71, 213–215.
Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Scienc. 2009, 325, 1110–1114.
Perdew, J. P.; Zunger, A. Self-interaction correction to densityfunctional approximations for many-electron systems. Phys. Rev. . 1981, 23, 5048–5079.
Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. . 1996, 54, 11169–11186.
Taylor, J.; Guo, H.; Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. . 2001, 63, 245407.
Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. . 2002, 65, 165401.
Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. : Condens. Matte. 2002, 14, 2745–2779.