Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Precision medicine is a potential effective therapeutic for various human diseases. Currently, metal complex-based drugs are being successfully used in clinical applications owing to diverse properties such as multiple redox states, photo-induced ligand exchange, and preferential ligand and coordination numbers, which facilitate drug design and development. However, drawbacks such as toxicity, lack of specificity, and severe side effects have hampered their therapeutic outcome. Therefore, innovative strategies for improving the specificity and pharmacokinetics of conventional metal complex-based therapeutic agents are required. Recently, nanotechnology, which provides a unique toolbox for developing effective and safer medicine, has attracted considerable attention, mainly because of their ability to reduce side effects and enhance drug loading efficiency and pharmacokinetics. Considering the promising chemical and physical properties of diverse nanostructures, nanoformulation of metal complexes can be used to effectively address the problems associated with current metallodrug complexes, especially those based on stimuli-responsive therapeutic strategies, with excellent spatial, temporal, and dosage control. In this review, we have mainly focused on the specificity and environment-responsiveness of metallodrug nanoformulations as therapeutics, and summarized the recent strategies being used for developing metal complex-functionalized intelligent nanoplatforms, which respond to various types of stimuli, including endogenous signals (pH, redox conditions, and enzyme activities) or external triggers (light irradiation and magnetic field manipulations). In addition, we have also discussed the potential challenges associated with use of metallodrugs and their nanoformulations as effective precision therapy with improved specificity and minimal side effects.
Friedman, A. A.; Letai, A.; Fisher, D. E.; Flaherty, K. T. Precision medicine for cancer with next-generation functional diagnostics. Nat. Rev. Cancer 2015, 15, 747–756.
Arnedos, M.; Vicier, C.; Loi, S.; Lefebvre, C.; Michiels, S.; Bonnefoi, H.; Andre, F. Precision medicine for metastatic breast cancer—Limitations and solutions. Nat. Rev. Clin. Oncol. 2015, 12, 693–704.
Mjos, K. D.; Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev. 2014, 114, 4540–4563.
Yang, Y.; Ouyang, R. Z.; Xu, L. N.; Guo, N.; Li, W. W.; Feng, K.; Ouyang, L.; Yang, Z. Y.; Zhou, S.; Miao, Y. Q. Review: Bismuth complexes: Synthesis and applications in biomedicine. J. Coord. Chem. 2015, 68, 379–397.
Pricker, S. P. Medical uses of gold compounds: Past, present and future. Gold Bull. 1996, 29, 53–60.
Bruijnincx, P. C. A.; Sadler, P. J. New trends for metal complexes with anticancer activity. Curr. Opin. Chem. Biol. 2008, 12, 197–206.
Romero-Canelón, I.; Sadler, P. J. Next-generation metal anticancer complexes: Multitargeting via redox modulation. Inorg. Chem. 2013, 52, 12276–12291.
Siddik, Z. H. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene 2003, 22, 7265–7279.
Wang, X. Y.; Wang, X. H.; Guo, Z. J. Functionalization of platinum complexes for biomedical applications. Acc. Chem. Res. 2015, 48, 2622–2631.
Dhar, S.; Kolishetti, N.; Lippard, S. J.; Farokhzad, O. C. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc. Natl. Acad. Sci. USA 2011, 108, 1850–1855.
Mout, R.; Moyano, D. F.; Rana, S.; Rotello, V. M. Surface functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev. 2012, 41, 2539–2544.
Mehdi, A.; Reye, C.; Corriu, R. From molecular chemistry to hybrid nanomaterials. Design and functionalization. Chem. Soc. Rev. 2011, 40, 563–574.
Dobrovolskaia, M. A.; McNeil, S. E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2007, 2, 469–478.
Barreto, J. A.; O'Malley, W.; Kubeil, M.; Graham, B.; Stephan, H.; Spiccia, L. Nanomaterials: Applications in cancer imaging and therapy. Adv. Mater. 2011, 23, H18–H40.
Qin, H. S.; Zhao, C. Q.; Sun, Y. H.; Ren, J. S.; Qu, X. G. Metallo-supramolecular complexes enantioselectively eradicate cancer stem cells in vivo. J. Am. Chem. Soc. 2017, 139, 16201–16209.
Liang, C.; Xu, L. G.; Song, G. S.; Liu, Z. Emerging nanomedicine approaches fighting tumor metastasis: Animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy. Chem. Soc. Rev. 2016, 45, 6250–6269.
Wani, W. A.; Prashar, S.; Shreaz, S.; Gómez-Ruiz, S. Nanostructured materials functionalized with metal complexes: In search of alternatives for administering anticancer metallodrugs. Coord. Chem. Rev. 2016, 312, 67–98.
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.
Son, S.; Shin, E.; Kim, B. -S. Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery. Biomacromolecules 2014, 15, 628–634.
Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2017, 2, 16075.
Yang, P. P.; Gai, S. L.; Lin, J. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev. 2012, 41, 3679–3698.
Meng, F. H.; Zhong, Z. Y.; Feijen, J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 2009, 10, 197–209.
Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126, 187–204.
Schmaljohann, D. Thermo-and pH-responsive polymers in drug delivery. Adv. Drug Del. Rev. 2006, 58, 1655–1670.
Zhang, Y. Q.; Yu, J. C.; Bomba, H. N.; Zhu, Y.; Gu, Z. Mechanical force-triggered drug delivery. Chem. Rev. 2016, 116, 12536–12563.
Wike-Hooley, J. L.; Haveman, J.; Reinhold, H. S. The relevance of tumour pH to the treatment of malignant disease. Radiother. Oncol. 1984, 2, 343–366.
Kim, J. W.; Dang, C. V. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 2006, 66, 8927–8930.
Brahimi-Horn, M. C.; Pouysségur, J. Oxygen, a source of life and stress. FEBS Lett. 2007, 581, 3582–3591.
Lee, E. S.; Gao, Z.; Bae, Y. H. Recent progress in tumor pH targeting nanotechnology. J. Control. Release 2008, 132, 164–170.
Li, Y. K.; Li, Y. C.; Zhang, X.; Xu, X. H.; Zhang, Z. J.; Hu, C.; He, Y. Y.; Gu, Z. W. Supramolecular PEGylated dendritic systems as pH/redox dual-responsive theranostic nanoplatforms for platinum drug delivery and NIR imaging. Theranostics 2016, 6, 1293–1305.
Lee, S. M.; O'Halloran, T. V.; Nguyen, S. T. Polymer-caged nanobins for synergistic cisplatin–doxorubicin combination chemotherapy. J. Am. Chem. Soc. 2010, 132, 17130–17138.
Lee, S. M.; Chen, H. M.; O'Halloran, T. V.; Nguyen, S. T. "Clickable" polymer-caged nanobins as a modular drug delivery platform. J. Am. Chem. Soc. 2009, 131, 9311–9320.
Lee, S. M.; Chen, H. M.; Dettmer, C. M.; O'Halloran, T. V.; Nguyen, S. T. Polymer-caged lipsomes: A pH-responsive delivery system with high stability. J. Am. Chem. Soc. 2007, 129, 15096–15097.
Yang, X. Z.; Du, X. J.; Liu, Y.; Zhu, Y. H.; Liu, Y. Z.; Li, Y. P.; Wang, J. Rational design of polyion complex nanoparticles to overcome cisplatin resistance in cancer therapy. Adv. Mater. 2014, 26, 931–936.
Kheirolomoom, A.; Ingham, E. S.; Commisso, J.; Abushaban, N.; Ferrara, K. W. Intracellular trafficking of a pH-responsive drug metal complex. J. Control. Release 2016, 243, 232–242.
Li, M.; Tan, L. S.; Tang, L. F.; Li, A. Q.; Hu, J. Q. Hydrosoluble 50% N-acetylation-thiolated chitosan complex with cobalt as a pH-responsive renal fibrosis targeting drugs. J. Biomater. Sci. Polym. Ed. 2016, 27, 972–985.
Mavuso, S.; Choonara, Y. E.; Marimuthu, T.; Kumar, P.; du Toit, L. C.; Kondiah, P. P.; Pillay, V. A dual pH/redox responsive copper-ligand nanoliposome bioactive complex for the treatment of chronic inflammation. Int. J. Pharm. 2016, 509, 348–359.
Li, H. J.; Du, J. Z.; Liu, J.; Du, X. J.; Shen, S.; Zhu, Y. H.; Wang, X. Y.; Ye, X. D.; Nie, S. M.; Wang, J. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: Instantaneous size switching and improved tumor penetration. ACS Nano 2016, 10, 6753–6761.
Shen, S.; Li, H. J.; Chen, K. G.; Wang, Y. C.; Yang, X. Z.; Lian, Z. X.; Du, J. Z.; Wang, J. Spatial targeting of tumorassociated macrophages and tumor cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapy. Nano Lett. 2017, 17, 3822–3829.
Meng, F. H.; Hennink, W. E.; Zhong, Z. Y. Reductionsensitive polymers and bioconjugates for biomedical applications. Biomaterials 2009, 30, 2180–2198.
Gauthier, M.A. Redox-responsive drug delivery. Antioxid. Redox Signal. 2014, 21, 705–706.
Schafer, F. Q.; Buettner, G. R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 2001, 30, 1191–1212.
Balendiran, G. K.; Dabur, R.; Fraser, D. The role of glutathione in cancer. Cell Biochem. Funct. 2004, 22, 343–352.
Saito, G.; Swanson, J. A.; Lee, K. D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: Role and site of cellular reducing activities. Adv. Drug Del. Rev. 2003, 55, 199–215.
Feazell, R. P.; Nakayama-Ratchford, N.; Dai, H. J.; Lippard, S. J. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(Ⅳ) anticancer drug design. J. Am. Chem. Soc. 2007, 129, 8438–8439.
Dhar, S.; Liu, Z.; Thomale, J.; Dai, H. J.; Lippard, S. J. Targeted single-wall carbon nanotube-mediated Pt(Ⅳ) prodrug delivery using folate as a homing device. J. Am. Chem. Soc. 2008, 130, 11467–11476.
Cong, Y. W.; Xiao, H. H.; Xiong, H. J.; Wang, Z. G.; Ding, J. X.; Li, C.; Chen, X. S.; Liang, X. J.; Zhou, D. F.; Huang, Y. B. Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung cancer. Adv. Mater. 2018, 30, 1706220.
He, C. B.; Lu, K. D.; Liu, D. M.; Lin, W. B. Nanoscale metal–organic frameworks for the Co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drugresistant ovarian cancer cells. J. Am. Chem. Soc. 2014, 136, 5181–5184.
Della Rocca, J.; Liu, D. M.; Lin, W. B. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 2011, 44, 957–968.
Wu, M. X.; Yang, Y. W. Metal–organic framework (MOF) -based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29, 1606134.
Zhu, Z. Z.; Wang, Z. H.; Hao, Y. G.; Zhu, C. C.; Jiao, Y.; Chen, H. C.; Wang, Y. M.; Yan, J.; Guo, Z. J.; Wang, X. Y. Glutathione boosting the cytotoxicity of a magnetic platinum(Ⅳ) nano-prodrug in tumor cells. Chem. Sci. 2016, 7, 2864–2869.
Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P. G. Hydrogen peroxide: A metabolic by-product or a common mediator of ageing signals? Nat. Rev. Mol. Cell Biol. 2007, 8, 722–728.
Shim, M. S.; Xia, Y. N. A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew. Chem., Int. Ed. 2013, 52, 6926–6929.
Gupta, M. K.; Meyer, T. A.; Nelson, C. E.; Duvall, C. L. Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. J. Control. Release 2012, 162, 591–598.
Chung, M. F.; Chia, W. T.; Wan, W. L.; Lin, Y. J.; Sung, H. W. Controlled release of an anti-inflammatory drug using an ultrasensitive ROS-responsive gas-generating carrier for localized inflammation inhibition. J. Am. Chem. Soc. 2015, 137, 12462–12465.
Chen, H. C.; He, W. J.; Guo, Z. J. An H2O2-responsive nanocarrier for dual-release of platinum anticancer drugs and O2: Controlled release and enhanced cytotoxicity against cisplatin resistant cancer cells. Chem. Commun. 2014, 50, 9714–9717.
Zhang, R.; Song, X. J.; Liang, C.; Yi, X.; Song, G. S.; Chao, Y.; Yang, Y.; Yang, K.; Feng, L. Z.; Liu, Z. Catalaseloaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. Biomaterials 2017, 138, 13–21.
Rodríguez, D.; Morrison, C. J.; Overall, C. M. Matrix metalloproteinases: What do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim. Biophys. Acta-Mol. Cell Res. 2010, 1803, 39–54.
Hu, J. M.; Zhang, G. Q.; Liu, S. Y. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem. Soc. Rev. 2012, 41, 5933–5949.
Ulijn, R. V. Enzyme-responsive materials: A new class of smart biomaterials. J. Mater. Chem. 2006, 16, 2217–2225.
De La Rica, R.; Aili, D.; Stevens, M. M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Del. Rev. 2012, 64, 967–978.
Huang, Y. Y.; Huang, W.; Chan, L.; Zhou, B. W.; Chen, T. F. A multifunctional DNA origami as carrier of metal complexes to achieve enhanced tumoral delivery and nullified systemic toxicity. Biomaterials 2016, 103, 183–196.
Huang, P.; Lin, J.; Wang, X. S.; Wang, Z.; Zhang, C. L.; He, M.; Wang, K.; Chen, F.; Li, Z. M.; Shen, G. X. et al. Light-triggered theranostics based on photosensitizerconjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater. 2012, 24, 5104–5110.
Ding, X. G.; Liow, C. H.; Zhang, M. X.; Huang, R. J.; Li, C. Y.; Shen, H.; Liu, M. Y.; Zou, Y.; Gao, N.; Zhang, Z. J. et al. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 2014, 136, 15684–15693.
Zhao, J. Y.; Lin, S. X.; Huang, Y.; Zhao, J.; Chen, P. R. Mechanism-based design of a photoactivatable firefly luciferase. J. Am. Chem. Soc. 2013, 135, 7410–7413.
Nomoto, T.; Fukushima, S.; Kumagai, M.; Machitani, K.; Matsumoto, Y.; Oba, M.; Miyata, K.; Osada, K.; Nishiyama, N.; Kataoka, K. Three-layered polyplex micelle as a multifunctional nanocarrier platform for light-induced systemic gene transfer. Nat. Commun. 2014, 5, 3545.
Tian, J. W.; Ding, L.; Ju, H. X.; Yang, Y. C.; Li, X. L.; Shen, Z.; Zhu, Z.; Yu, J. S.; Yang, C. J. A multifunctional nanomicelle for real-time targeted imaging and precise near-infrared cancer therapy. Angew. Chem., Int. Ed. 2014, 53, 9544–9549.
Huang, L.; Zhao, Y.; Zhang, H.; Huang, K.; Yang, J. Y.; Han, G. Expanding anti-stokes shifting in triplet-triplet annihilation upconversion for in vivo anticancer prodrug activation. Angew. Chem., Int. Ed. 2017, 56, 14400–14404.
Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 2010, 110, 2620–2640.
Shen, J.; Chen, G. Y.; Vu, A. M.; Fan, W.; Bilsel, O. S.; Chang, C. C.; Han, G. Engineering the upconversion nanoparticle excitation wavelength: Cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv. Opt. Mater. 2013, 1, 644–650.
Klohs, J.; Wunder, A.; Licha, K. Near-infrared fluorescent probes for imaging vascular pathophysiology. Basic Res. Cardiol. 2008, 103, 144–151.
Jing, T. T.; Fu, L. Y.; Liu, L.; Yan, L. F. A reductionresponsive polypeptide nanogel encapsulating NIR photosensitizer for imaging guided photodynamic therapy. Polym. Chem. 2016, 7, 951–957.
Deng, K. R.; Hou, Z. Y.; Deng, X. R.; Yang, P. P.; Li, C. X.; Lin, J. Enhanced antitumor efficacy by 808 nm laser-induced synergistic photothermal and photodynamic therapy based on a indocyanine-green-attached W18O49 nanostructure. Adv. Funct. Mater. 2015, 25, 7280–7290.
Barth, B. M.; I. Altinoğlu, E.; Shanmugavelandy, S. S.; Kaiser, J. M.; Crespo-Gonzalez, D.; DiVittore, N. A.; McGovern, C.; Goff, T. M.; Keasey, N. R.; Adair, J. H. et al. Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia. ACS Nano 2011, 5, 5325–5337.
Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254–6287.
Kim, H. P.; Ryter, S. W.; Choi, A. M. K. CO as a cellular signaling molecule. Annu. Rev. Pharmacol. Toxicol. 2006, 46, 411–449.
Motterlini, R.; Otterbein, L. E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 2010, 9, 728–743.
Matson, J. B.; Webber, M. J.; Tamboli, V. K.; Weber, B.; Stupp, S. I. A peptide-based material for therapeutic carbon monoxide delivery. Soft Matter 2012, 8, 6689–6692.
Fujita, K.; Tanaka, Y.; Abe, S.; Ueno, T. A Photoactive carbon-monoxide-releasing protein cage for dose-regulated delivery in living cells. Angew. Chem., Int. Ed. 2016, 55, 1056–1060.
Nguyen, D.; Nguyen, T. K.; Rice, S. A.; Boyer, C. CO-releasing polymers exert antimicrobial activity. Biomacromolecules 2015, 16, 2776–2786.
Govender, P.; Pai, S.; Schatzschneider, U.; Smith, G. S. Next generation PhotoCORMs: Polynuclear tricarbonylmanganese(I)-functionalized polypyridyl metallodendrimers. Inorg. Chem. 2013, 52, 5470–5478.
Dördelmann, G.; Meinhardt, T.; Sowik, T.; Krueger, A.; Schatzschneider, U. CuAAC click functionalization of azidemodified nanodiamond with a photoactivatable CO-releasing molecule (PhotoCORM) based on [Mn(CO)3(tpm)]+. Chem. Commun. 2012, 48, 11528–11530.
Chakraborty, I.; Carrington, S. J.; Hauser, J.; Oliver, S. R.; Mascharak, P. K. Rapid eradication of human breast cancer cells through trackable light-triggered CO delivery by mesoporous silica nanoparticles packed with a designed photoCORM. Chem. Mater. 2015, 27, 8387–8397.
Mackay, F. S.; Woods, J. A.; Heringová, P.; Kašpárková, J.; Pizarro, A. M.; Moggach, S. A.; Parsons, S.; Brabec, V.; Sadler, P. J. A potent cytotoxic photoactivated platinum complex. Proc. Natl. Acad. Sci. USA 2007, 104, 20743–20748.
Frasconi, M.; Liu, Z. C.; Lei, J. Y.; Wu, Y. L.; Strekalova, E.; Malin, D.; Ambrogio, M. W.; Chen, X. Q.; Botros, Y. Y.; Cryns, V. L. et al. Photoexpulsion of surface-grafted ruthenium complexes and subsequent release of cytotoxic cargos to cancer cells from mesoporous silica nanoparticles. J. Am. Chem. Soc. 2013, 135, 11603–11613.
Li, X.; Mu, J.; Liu, F.; Tan, E. W. P.; Khezri, B.; Webster, R. D.; Yeow, E. K. L.; Xing, B. G. Human transport protein carrier for controlled photoactivation of antitumor prodrug and real-time intracellular tumor imaging. Bioconjugate Chem. 2015, 26, 955–961.
Zirkin, S.; Fishman, S.; Sharim, H.; Michaeli, Y.; Don, J.; Ebenstein, Y. Lighting up individual DNA damage sites by in vitro repair synthesis. J. Am. Chem. Soc. 2014, 136, 7771–7776.
Schwarz, A.; Ständer, S.; Berneburg, M.; Böhm, M.; Kulms, D.; van Steeg, H.; Grosse-Heitmeyer, K.; Krutmann, J.; Schwarz, T. Interleukin-12 suppresses ultraviolet radiationinduced apoptosis by inducing DNA repair. Nat. Cell Biol. 2002, 4, 26–31.
Wu, W.; Yao, L. M.; Yang, T. S.; Yin, R. Y.; Li, F. Y.; Yu, Y. L. NIR-light-induced deformation of cross-linked liquidcrystal polymers using upconversion nanophosphors. J. Am. Chem. Soc. 2011, 133, 15810–15813.
Carling, C. J.; Boyer, J. C.; Branda, N. R. Remote-control photoswitching using NIR light. J. Am. Chem. Soc. 2009, 131, 10838–10839.
Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725–10815.
Yang, D. M.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Li, C. X.; Lin, J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 2015, 44, 1416–1448.
Hu, J.; Tang, Y. A.; Elmenoufy, A. H.; Xu, H. B.; Cheng, Z.; Yang, X. L. Nanocomposite-based photodynamic therapy strategies for deep tumor treatment. Small 2015, 11, 5860–5887.
Ai, X. Z.; Ho, C. J. H.; Aw, J.; Attia, A. B. E.; Mu, J.; Wang, Y.; Wang, X. Y.; Wang, Y.; Liu, X. G.; Chen, H. B. et al. In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nat. Commun. 2016, 7, 10432.
Song, X. J.; Chen, Q.; Liu, Z. Recent advances in the development of organic photothermal nano-agents. Nano Res. 2015, 8, 340–354.
Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.
Luo, D. D.; Carter, K. A.; Miranda, D.; Lovell, J. F. Chemophototherapy: An emerging treatment option for solid tumors. Adv. Sci. 2017, 4, 1600106.
Bansal, A.; Zhang, Y. Photocontrolled nanoparticle delivery systems for biomedical applications. Acc. Chem. Res. 2014, 47, 3052–3060.
Yang, X. J.; Liu, Z.; Li, Z. H.; Pu, F.; Ren, J. S.; Qu, X. G. Near-infrared-controlled, targeted hydrophobic drug-delivery system for synergistic cancer therapy. Chem. Eur. J. 2013, 19, 10388–10394.
Xia, Y. N.; Li, W. Y.; Cobley, C. M.; Chen, J. Y.; Xia, X. H.; Zhang, Q.; Yang, M. X.; Cho, E. C.; Brown, P. K. Gold nanocages: From synthesis to theranostic applications. Acc. Chem. Res. 2011, 44, 914–924.
Zheng, W.; Huang, P.; Tu, D. T.; Ma, E.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2015, 44, 1379–1415.
Liu, D. M.; Xu, X. X.; Du, Y.; Qin, X.; Zhang, Y. H.; Ma, C. S.; Wen, S. H.; Ren, W.; Goldys, E. M.; Piper, J. A. et al. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nat. Commun. 2016, 7, 10254.
Li, X. M.; Zhang, F.; Zhao, D. Y. Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 2015, 44, 1346–1378.
Dong, H.; Sun, L. D.; Yan, C. H. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem. Soc. Rev. 2015, 44, 1608–1634.
Yang, Y. M.; Shao, Q.; Deng, R. R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X. G. et al. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 3125–3129.
Idris, N. M.; Jayakumar, M. K. G.; Bansal, A.; Zhang, Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem. Soc. Rev. 2015, 44, 1449–1478.
Tsang, M. K.; Bai, G. X.; Hao, J. H. Stimuli responsive upconversion luminescence nanomaterials and films for various applications. Chem. Soc. Rev. 2015, 44, 1585–1607.
Pierri, A. E.; Huang, P. J.; Garcia, J. V.; Stanfill, J. G.; Chui, M. G.; Wu, G.; Zheng, N. F.; Ford, P. C. A photoCORM nanocarrier for CO release using NIR light. Chem. Commun. 2015, 51, 2072–2075.
Hu, M.; Zhao, J. X.; Ai, X. Z.; Budanovic, M.; Mu, J.; Webster, R. D.; Cao, Q.; Mao, Z. W.; Xing, B. G. Near infrared light-mediated photoactivation of cytotoxic Re(Ⅰ) complexes by using lanthanide-doped upconversion nanoparticles. Dalton Trans. 2016, 45, 14101–14108.
Perfahl, S.; Natile, M. M.; Mohamad, H. S.; Helm, C. A.; Schulzke, C.; Natile, G.; Bednarski, P. J. Photoactivation of diiodido–Pt(Ⅳ) complexes coupled to upconverting nanoparticles. Mol. Pharm. 2016, 13, 2346–2362.
Burks, P. T.; Garcia, J. V.; GonzalezIrias, R.; Tillman, J. T.; Niu, M. T.; Mikhailovsky, A. A.; Zhang, J. P.; Zhang, F.; Ford, P. C. Nitric oxide releasing materials triggered by near-infrared excitation through tissue filters. J. Am. Chem. Soc. 2013, 135, 18145–18152.
Garcia, J. V.; Yang, J. P.; Shen, D. K.; Yao, C.; Li, X. M.; Wang, R.; Stucky, G. D.; Zhao, D. Y.; Ford, P. C.; Zhang, F. NIR-triggered release of caged nitric oxide using upconverting nanostructured materials. Small 2012, 8, 3800–3805.
Dai, Y. L.; Xiao, H. H.; Liu, J. H.; Yuan, Q. H.; Ma, P. A.; Yang, D. M.; Li, C. X.; Cheng, Z. Y.; Hou, Z. Y.; Yang, P. P. et al. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. J. Am. Chem. Soc. 2013, 135, 18920–18929.
Min, Y. Z.; Li, J. M.; Liu, F.; Yeow, E. K. L.; Xing, B. G. near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles. Angew. Chem. 2014, 126, 1030–1034.
He, S. Q.; Krippes, K.; Ritz, S.; Chen, Z. J.; Best, A.; Butt, H. J.; Mailänder, V.; Wu, S. Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles. Chem. Commun. 2015, 51, 431–434.
Zhang, Y.; Yu, Z. Z.; Li, J. Q.; Ao, Y. X.; Xue, J. W.; Zeng, Z. P.; Yang, X. L.; Tan, T. T. Y. Ultrasmall-superbright neodymium-upconversion nanoparticles via energy migration manipulation and lattice modification: 808 nm-activated drug release. ACS Nano 2017, 11, 2846–2857.
Shanmugam, V.; Chien, Y. H.; Cheng, Y. S.; Liu, T. Y.; Huang, C. C.; Su, C. H.; Chen, Y. S.; Kumar, U.; Hsu, H. F.; Yeh, C. S. Oligonucleotides—assembled Au nanorodassisted cancer photothermal ablation and combination chemotherapy with targeted dual-drug delivery of doxorubicin and cisplatin prodrug. ACS Appl. Mater. Interfaces 2014, 6, 4382–4393.
Bi, H. T.; Dai, Y. L.; Xu, J. T.; Lv, R. C.; He, F.; Gai, S. L.; Yang, D.; Yang, P. P. CuS–Pt(Ⅳ)–PEG–FA nanoparticles for targeted photothermal and chemotherapy. J. Mat. Chem. B 2016, 4, 5938–5946.
Shi, S. G.; Chen, X. L.; Wei, J. P.; Huang, Y. Z.; Weng, J.; Zheng, N. F. Platinum(Ⅳ) prodrug conjugated Pd@Au nanoplates for chemotherapy and photothermal therapy. Nanoscale 2016, 8, 5706–5713.
You, C.; Wu, H.; Wang, M.; Gao, Z.; Zhang, X.; Sun, B. Co-delivery of cisplatin and CJM-126 via photothermal conversion nanoparticles for enhanced synergistic antitumor efficacy. Nanotechnology 2018, 29, 015601.
Li, W.; Liu, Z.; Chen, Z. W.; Kang, L. H.; Guan, Y. J.; Ren, J. S.; Qu, X. G. An intelligent near-infrared light activatable nanosystem for accurate regulation of zinc signaling in living cells. Nano Res. 2017, 10, 3068–3076.
Ai, F. J.; Ju, Q.; Zhang, X. M.; Chen, X.; Wang, F.; Zhu, G. Y. A core-shell-shell nanoplatform upconverting near-infrared light at 808 nm for luminescence imaging and photodynamic therapy of cancer. Sci. Rep. 2015, 5, 10785.
Zou, W. Q.; Visser, C.; Maduro, J. A.; Pshenichnikov, M. S.; Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 2012, 6, 560–564.
Zhang, P. Y.; Chiu, C. K.; Huang, H. Y.; Lam, Y. P. Y.; Habtemariam, A.; Malcomson, T.; Paterson, M. J.; Clarkson, G. J.; O'Connor, P. B.; Chao, H. et al. Organoiridium photosensitizers induce specific oxidative attack on proteins within cancer cells. Angew. Chem., Int. Ed. 2017, 56, 14898–14902.
Ju, E. G.; Dong, K.; Chen, Z. W.; Liu, Z.; Liu, C. Q.; Huang, Y. Y.; Wang, Z. Z.; Pu, F.; Ren, J. S.; Qu, X. G. Copper(Ⅱ)–graphitic carbon nitride triggered synergy: Improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy. Angew. Chem. 2016, 128, 11639–11643.
Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042.
Josefsen, L. B.; Boyle, R. W. Photodynamic therapy and the development of metal-based photosensitisers. Met. Based Drugs 2008, 2008, 276109.
Li, S. P. Y.; Lau, C. T. S.; Louie, M. W.; Lam, Y. W.; Cheng, S. H.; Lo, K. K. W. Mitochondria-targeting cyclometalated iridium(Ⅲ)–PEG complexes with tunable photodynamic activity. Biomaterials 2013, 34, 7519–7532.
Shi, H. F.; Ma, X.; Zhao, Q.; Liu, B.; Qu, Q. Y.; An, Z. F.; Zhao, Y. L.; Huang, W. Ultrasmall phosphorescent polymer dots for ratiometric oxygen sensing and photodynamic cancer therapy. Adv. Funct. Mater. 2014, 24, 4823–4830.
Ding, X. S.; Han, B. H. Metallophthalocyanine-based conjugated microporous polymers as highly efficient photosensitizers for singlet oxygen generation. Angew. Chem. 2015, 127, 6636–6639.
Huang, L.; Li, Z. J.; Zhao, Y.; Yang, J. Y.; Yang, Y. C.; Pendharkar, A. I.; Zhang, Y. W.; Kelmar, S.; Chen, L. Y.; Wu, W. T. et al. Enhancing photodynamic therapy through resonance energy transfer constructed near-infrared photosensitized nanoparticles. Adv. Mater. 2017, 29, 1604789.
Yuan, A. H.; Tang, X. L.; Qiu, X. F.; Jiang, K.; Wu, J. H.; Hu, Y. Q. Activatable photodynamic destruction of cancer cells by NIR dye/photosensitizer loaded liposomes. Chem. Commun. 2015, 51, 3340–3342.
Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.
Cheng, Y.; Doane, T. L.; Chuang, C. H.; Ziady, A.; Burda, C. Near infrared light-triggered drug generation and release from gold nanoparticle carriers for photodynamic therapy. Small 2014, 10, 1799–1804.
Wang, C.; Cheng, L.; Liu, Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics 2013, 3, 317–330.
Zhang, P.; Steelant, W.; Kumar, M.; Scholfield, M. Versatile photosensitizers for photodynamic therapy at infrared excitation. J. Am. Chem. Soc. 2007, 129, 4526–4527.
Cui, S. S.; Yin, D. Y.; Chen, Y. Q.; Di, Y. F.; Chen, H. Y.; Ma, Y. X.; Achilefu, S.; Gu, Y. Q. In vivo targeted deeptissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano 2013, 7, 676–688.
Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580–1585.
Wang, X. J.; Wang, C.; Cheng, L.; Lee, S. T.; Liu, Z. Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J. Am. Chem. Soc. 2012, 134, 7414–7422.
Huang, P.; Rong, P. F.; Lin, J.; Li, W. W.; Yan, X. F.; Zhang, M. G.; Nie, L. M.; Niu, G.; Lu, J.; Wang, W. et al. Triphase interface synthesis of plasmonic gold bellflowers as near-infrared light mediated acoustic and thermal theranostics. J. Am. Chem. Soc. 2014, 136, 8307–8313.
Lin, J.; Wang, M.; Hu, H.; Yang, X. Y.; Wen, B.; Wang, Z. T.; Jacobson, O.; Song, J. B.; Zhang, G. F.; Niu, G. et al. Multimodal-imaging-guided cancer phototherapy by versatile biomimetic theranostics with UV and γ-irradiation protection. Adv. Mater. 2016, 28, 3273–3279.
Zhu, X. J.; Feng, W.; Chang, J.; Tan, Y. W.; Li, J. C.; Chen, M.; Sun, Y.; Li, F. Y. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 2016, 7, 10437.
Zhang, L. Y.; Chen, Y. Y.; Li, Z. L.; Li, L.; Saint-Cricq, P.; Li, C. X.; Lin, J.; Wang, C. G.; Su, Z. M.; Zink, J. I. Tailored synthesis of octopus-type janus nanoparticles for synergistic actively-targeted and chemo-photothermal therapy. Angew. Chem., Int. Ed. 2016, 55, 2118–2121.
Li, X. J.; Takashima, M.; Yuba, E.; Harada, A.; Kono, K. PEGylated PAMAM dendrimer–doxorubicin conjugatehybridized gold nanorod for combined photothermalchemotherapy. Biomaterials 2014, 35, 6576–6584.
Leung, S. J.; Kachur, X. M.; Bobnick, M. C.; Romanowski, M. Wavelength-selective light-induced release from plasmon resonant liposomes. Adv. Funct. Mater. 2011, 21, 1113–1121.
Zhang, P. Y.; Wang, J. Q.; Huang, H. Y.; Yu, B. L.; Qiu, K. Q.; Huang, J. J.; Wang, S. T.; Jiang, L.; Gasser, G.; Ji, L. N. et al. Unexpected high photothemal conversion efficiency of gold nanospheres upon grafting with twophoton luminescent ruthenium(Ⅱ) complexes: A way towards cancer therapy? Biomaterials 2015, 63, 102–114.
Bello-Vieda, N. J.; Pastrana, H. F.; Garavito, M. F.; ávila, A. G.; Celis, A. M.; Muñoz-Castro, A.; Restrepo, S.; Hurtado, J. J. Antibacterial activities of azole complexes combined with silver nanoparticles. Molecules 2018, 23, 361.
Albada, B.; Metzler-Nolte, N. Highly potent antibacterial organometallic peptide conjugates. Acc. Chem. Res. 2017, 50, 2510–2518.
Chen, Z. W.; Ji, H. W.; Liu, C. Q.; Bing, W.; Wang, Z. Z.; Qu, X. G. A Multinuclear metal complex based DNAsemimetic artificial enzyme: Matrix cleavage for combating bacterial biofilms. Angew. Chem., Int. Ed. 2016, 55, 10732–10736.
Azócar, M. I.; Gómez, G.; Levín, P.; Paez, M.; Muñoz, H.; Dinamarca, N. Review: Antibacterial behavior of carboxylate silver(I) complexes. J. Coord. Chem. 2014, 67, 3840–3853.
Lin, D. H.; Qin, T. Q.; Wang, Y. Q.; Sun, X. Y.; Chen, L. X. Graphene oxide wrapped SERS tags: Multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect. ACS Appl. Mater. Interfaces 2014, 6, 1320–1329.
Lovell, J. F.; Jin, C. S.; Huynh, E.; MacDonald, T. D.; Cao, W. G.; Zheng, G. Enzymatic regioselection for the synthesis and biodegradation of porphysome nanovesicles. Angew. Chem., Int. Ed. 2012, 51, 2429–2433.
Xu, L. G.; Cheng, L.; Wang, C.; Peng, R.; Liu, Z. Conjugated polymers for photothermal therapy of cancer. Polym. Chem. 2014, 5, 1573–1580.
Huang, P.; Gao, Y.; Lin, J.; Hu, H.; Liao, H. S.; Yan, X. F.; Tang, Y. X.; Jin, A.; Song, J. B.; Niu, G. et al. Tumorspecific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics. ACS Nano 2015, 9, 9517–9527.
Lin, M.; Wang, D. D.; Liu, S. W.; Huang, T. T.; Sun, B.; Cui, Y.; Zhang, D. Q.; Sun, H. C.; Zhang, H.; Sun, H. et al. Cupreous complex-loaded chitosan nanoparticles for photothermal therapy and chemotherapy of oral epithelial carcinoma. ACS Appl. Mater. Interfaces 2015, 7, 20801–20812.
Khan, I.; Tang, E.; Arany, P. Molecular pathway of nearinfrared laser phototoxicity involves ATF-4 orchestrated ER stress. Sci. Rep. 2015, 5, 10581.
Thévenot, J.; Oliveira, H.; Sandre, O.; Lecommandoux, S. Magnetic responsive polymer composite materials. Chem. Soc. Rev. 2013, 42, 7099–7116.
Hao, R.; Xing, R. J.; Xu, Z. C.; Hou, Y. L.; Gao, S.; Sun, S. H. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010, 22, 2729–2742.
Gao, J. H.; Gu, H. W.; Xu, B. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 2009, 42, 1097–1107.
Sun, C.; Lee, J. S. H.; Zhang, M. Q. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Del. Rev. 2008, 60, 1252–1265.
Åkerman, M. E.; Chan, W. C.; Laakkonen, P.; Bhatia, S. N.; Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA 2002, 99, 12617–12621.
Zhao, W. R.; Gu, J. L.; Zhang, L. X.; Chen, H. R.; Shi, J. L. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J. Am. Chem. Soc. 2005, 127, 8916–8917.
Kumar, C. S. S. R.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Del. Rev. 2011, 63, 789–808.
Kunz, P. C.; Meyer, H.; Barthel, J.; Sollazzo, S.; Schmidt, A. M.; Janiak, C. Metal carbonyls supported on iron oxide nanoparticles to trigger the CO-gasotransmitter release by magnetic heating. Chem. Commun. 2013, 49, 4896–4898.
Chen, W. H.; Luo, G. F.; Lei, Q.; Cao, F. Y.; Fan, J. X.; Qiu, W. X.; Jia, H. Z.; Hong, S.; Fang, F.; Zeng, X. et al. Rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy. Biomaterials 2016, 76, 87–101.
Kim, J. H.; Eguchi, H.; Umemura, M.; Sato, I.; Yamada, S.; Hoshino, Y.; Masuda, T.; Aoki, I.; Sakurai, K.; Yamamoto, M. et al. Magnetic metal-complex-conducting copolymer core–shell nanoassemblies for a single-drug anticancer platform. NPG Asia Mater. 2017, 9, e367.
Stasiuk, G. J.; Long, N. J. The ubiquitous DOTA and its derivatives: The impact of 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid on biomedical imaging. Chem. Commun. 2013, 49, 2732–2746.
Liu, C. Y.; Hou, Y.; Gao, M. Y. Are rare-earth nanoparticles suitable for in vivo applications? Adv. Mater. 2014, 26, 6922–6932.
Hu, Q. Y.; Katti, P. S.; Gu, Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 2014, 6, 12273–12286.