Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In recent years, development of all-solid-state batteries has become a promising approach to improve the safety of batteries. Herein, we report the preparation of a new composite polymer electrolyte (CPE) for use in all-solid-state sodium ion batteries. The CPE comprising of poly(methacrylate) (PMA), poly(ethylene glycol) (PEG), α-Al2O3 with acidic surface sites, and NaClO4 exhibited high ionic conductivity (1.46 × 10-4 S·cm-1 at 70 ℃), wide electrochemical stability window (4.5 V vs. Na+/Na), and good mechanical strength. With the introduction of the prepared CPE and Na3V2(PO4)3, the final all-solid-state sodium ion batteries showed good rate and cycle performance, with a high reversible capacity of 85 mAh·g-1 when operated at 0.5 C (1 C = 118 mA·g–1) and 94.1% capacity retention rate after 350 cycles at 70 ℃. Our work provides a novel solid electrolyte for the development of all-solid-state sodium ion batteries.
Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodiumion batteries. Adv. Energy Mater. 2016, 6, 1600943.
Ling, L. M.; Bai, Y.; Wang, H. L.; Ni, Q.; Zhang, J. T.; Wu, F.; Wu, C. Mesoporous TiO2 microparticles formed by the oriented attachment of nanocrystals: A super-durable anode material for sodium-ion batteries. Nano Res. 2018, 11, 1563–1574.
Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.
Zhang, Q. Q.; Liu, K.; Ding, F.; Liu, X. J. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174.
Yang, C. P.; Fu, K.; Zhang, Y.; Hitz, E.; Hu, L. B. Protected lithium-metal anodes in batteries: From liquid to solid. Adv. Mater. 2017, 29, 1701169.
Choi, H.; Kim, H. W.; Ki, J. K.; Lim, Y. J.; Kim, Y.; Ahn, J. H. Nanocomposite quasi-solid-state electrolyte for highsafety lithium batteries. Nano Res. 2017, 10, 3092–3102.
Zhang, K.; Lee, G. H.; Park, M.; Li, W. J.; Kang, Y. M. Recent developments of the lithium metal anode for rechargeable non-aqueous batteries. Adv. Energy Mater. 2016, 6, 1600811.
Farrington, G. C.; Briant, J. L. Fast ionic transport in solids. Scienc. 1979, 204, 1371–1379.
Harry, K. J.; Hallinan, D. T.; Parkinson, D. Y.; MacDowell, A. A.; Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 2014, 13, 69–73.
Fullerton-Shirey, S. K.; Maranas, J. K. Effect of LiClO4 on the structure and mobility of PEO-based solid polymer electrolytes. Macromolecule. 2009, 42, 2142–2156.
Depre, L.; Kappel, J.; Popall, M. Inorganic–organic proton conductors based on alkylsulfone functionalities and their patterning by photoinduced methods. Electrochim. Act. 1998, 43, 1301–1306.
Honma, I.; Hirakawa, S.; Yamada, K.; Bae, J. M. Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol-gel processes. Solid State Ionic. 1999, 118, 29–36.
Gupta, R. K.; Jung, H. Y.; Whang, C. M. Transport properties of a new Li+ ion-conducting ormolyte: (SiO2-PEG)-LiCF3SO3. J. Mater. Chem. 2002, 12, 3779–3782.
Singh, M.; Odusanya, O.; Wilmes, G. M.; Eitouni, H. B.; Gomez, E. D.; Patel, A. J.; Chen, V. L.; Park, M. J.; Fragouli, P.; Iatrou, H. et al. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecule. 2007, 40, 4578–4585.
Wanakule, N. S.; Panday, A.; Mullin, S. A.; Gann, E.; Hexemer, A; Balsara, N. P. Ionic conductivity of block copolymer electrolytes in the vicinity of order-disorder and order-order transitions. Macromolecule. 2009, 42, 5642–5651.
Gomez, E. D.; Panday, A.; Feng, E. H.; Chen, V.; Stone, G. M.; Minor, A. M.; Kisielowski, C.; Downing, K. H.; Borodin, O.; Smith, G. D. et al. Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett. 2009, 9, 1212–1216.
Choi, I.; Ahn, H.; Park, M. J. Enhanced performance in lithium-polymer batteries using surface-functionalized Si nanoparticle anodes and self-assembled block copolymer electrolytes. Macromolecule. 2011, 44, 7327–7334.
Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J. -P.; Phan, T. N. T.; Bertin, D.; Gigmes, D.; Devaux, D. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 2013, 12, 452–457.
Sun, J.; Liao, X. X.; Minor, A. M.; Balsara, N. P.; Zuckermann, R. N. Morphology-conductivity relationship in crystalline and amorphous sequence-defined peptoid block copolymer electrolytes. J. Am. Chem. Soc. 2014, 136, 14990–14997.
Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Natur. 1998, 394, 456–458.
Zhou, W. D.; Gao, H.C.; Goodenough, J. B. Low-cost hollow mesoporous polymer spheres and all-solid-state lithium, sodium batteries. Adv. Energy Mater. 2016, 6, 1501802.
Gowneni, S.; Ramanjaneyulu, K.; Basak, P. Polymernanocomposite brush-like architectures as an all-solid electrolyte matrix. ACS Nan. 2014, 8, 11409–11424.
Zhang, Z. Z.; Zhang, Q. Q.; Ren, C.; Luo, F.; Ma, Q.; Hu, Y. S.; Zhou, Z. B.; Li, H.; Huang, X. J.; Chen, L. Q. A ceramic/polymer composite solid electrolyte for sodium batteries. J. Mater. Chem. . 2016, 4, 15823–15828.
Lin, D. C.; Liu, W.; Liu, Y. Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016, 16, 459–465.
Song, J. Y.; Wang, Y. Y.; Wan, C. C. Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sourc. 1999, 77, 183–197.
Stephan, A. M. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 2006, 42, 21–42.
Zhao, C. L.; Liu, L. L.; Qi, X. G.; Lu, Y. X.; Wu, F. X.; Zhao, J. M.; Yu, Y.; Hu, Y. S.; Chen, L. Q. Solid-state sodium batteries. Adv. Energy Mater. 2018, 8, 1703012.
Huang, W. W.; Zhu, Z. Q.; Wang, L. J.; Wang, S. W.; Li, H.; Tao, Z. L.; Shi, J. F.; Guan, L. H.; Chen, J. Quasisolid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte. Angew. Chem., Int. Ed. 2013, 52, 9162–9166.
Shi. J. F.; Peng, S. J.; Pei, J.; Liang, Y. L.; Cheng, F. Y.; Chen, J. Quasi-solid-state dye-sensitized solar cells with polymer gel electrolyte and triphenylamine-based organic dyes. ACS Appl. Mater. Interface. 2009, 1, 944–950.
Zhu, Z. Q.; Hong, M. L.; Guo, D. S.; Shi, J. F.; Tao, Z. L.; Chen, J. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. J. Am. Chem. Soc. 2014, 136, 16461–16464.
Hu, X. F.; Li, Z. F.; Chen, J. Flexible Li-CO2 batteries with liquid-free electrolyte. Angew. Chem., Int. Ed. 2017, 56, 5785–5789.
Liang, J. Z. Predictions of Young's modulus of inorganic fibrous particulate-reinforced polymer composites. J. Appl. Polym. Sci. 2013, 130, 2957–2961.
Jakobsen, J.; Jensen, M.; Andreasen, J. H. Thermomechanical characterisation of in-plane properties for CSM E-glass epoxy polymer composite materials-Part 2: Young's modulus. Polym. Test. 2013, 32, 1417–1422.
Wodtke, M.; Wasilczuk, M. Evaluation of apparent Young's modulus of the composite polymer layers used as sliding surfaces in hydrodynamic thrust bearings. Tribol. Int. 2016, 97, 244–252.
Lu, Y. Y.; Korf, K.; Kambe, Y.; Tu, Z. Y.; Archer, L. A. Ionic-liquid-nanoparticle hybrid electrolytes: Applications in lithium metal batteries. Angew. Chem., Int. Ed. 2014, 53, 488–492.
Croce, F.; Persi, L.; Scrosati, B.; Serraino-Fiory, F.; Plichta, E.; Hendrickson, M. A. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim. Act. 2001, 46, 2457–2461.
Ganapatibhotla, L. V. N. R.; Maranas, J. K. Interplay of surface chemistry and ion content in nanoparticle-filled solid polymer electrolytes. Macromolecule. 2014, 47, 3625–3634.
Srivastava, S.; Schaefer, J. L.; Yang, Z. C.; Tu, Z. Y.; Archer, L. A. 25th anniversary article: Polymer-particle composites: Phase stability and applications in electrochemical energy storage. Adv. Mater. 2014, 26, 201–234.
Salomon, M.; Xu, M. Z.; Eyring, E. M.; Petrucci, S. Molecular structure and dynamics of LiClO4-polyethylene oxide-400 (dimethyl ether and diglycol systems) at 25 ℃. J. Phys. Chem. 1994, 98, 8234–8244.
Xiong, H. M.; Zhao, X.; Chen, J. S. New polymer-inorganic nanocomposites: PEO-ZnO and PEO-ZnO-LiClO4 films. J. Phys. Chem. . 2001, 105, 10169–10174.
Wang, X. L.; Fan, L. Z.; Mei, A.; Ma, F. Y.; Lin, Y. H.; Nan, C. W. Ionic transport behavior in poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) and LiClO4 complex. Electrochim. Act. 2008, 53, 2448–2452.
Liu, W.; Liu, N.; Sun, J.; Hsu, P. C.; Li, Y. Z.; Lee, H. W.; Cui, Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 2015, 15, 2740–2745.
Wang, H. B.; Zhang, T. R.; Chen, C.; Ling, M.; Lin, Z.; Zhang, S. Q.; Pan, F.; Liang, C. D. High-performance aqueous symmetric sodium-ion battery using NASICON-structured Na2VTi(PO4)3. Nano Res. 2018, 11, 490–498.