Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
B cells exert multiple effector functions, and dysfunctions of B cells often lead to initiation and progression of diseases, including autoimmune and inflammatory diseases. Therefore, B cell intervention may be an effective strategy to treat diseases involving B cells. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing system has been widely used for DNA deletion, insertion, and replacement. Nanocarriers have been developed as relatively mature systems and may be applied to deliver the CRISPR-Cas9 system to B cells in vivo. In this study, we created a library of nanoparticles (NPs) with different polyethylene glycol densities and zeta potentials and screened an optimal NP for in vivo B cell targeting. The selected NP could deliver the CRISPR-Cas9 system to B cells and induce Cas9 expression inside the cell environment. Injection of the NP encapsulated with Cas9/gB220 (NPCas9/gB220) into mice could disrupt B220 expression in B cells, suggestive of its applications to intervene the expression of the target molecule in B cells. Moreover, the treatment with NPCas9/gBAFFR could decrease the number of B cells and exert therapeutic effect in rheumatoid arthritis, as B-cell activating factor receptor (BAFFR) is vital for the survival and functions of B cells. In conclusion, we developed a carrier for the delivery of the CRISPR-Cas9 gene editing system for B cell intervention that could be used for the treatment of diseases related to B cell dysfunctions.
Claes, N.; Fraussen, J.; Stinissen, P.; Hupperts, R.; Somers, V. B cells are multifunctional players in multiple sclerosis pathogenesis: Insights from therapeutic interventions. Front. Immunol. 2015, 6, 642.
Rawlings, D. J.; Metzler, G.; Wray-Dutra, M.; Jackson, S. W. Altered B cell signalling in autoimmunity. Nat. Rev. Immunol. 2017, 17, 421–436.
Larche, M.; Akdis, C. A.; Valenta, R. Immunological mechanisms of allergen-specific immunotherapy. Nat. Rev. Immunol. 2006, 6, 761–771.
Honigberg, L. A.; Smith, A. M.; Sirisawad, M.; Verner, E.; Loury, D.; Chang, B.; Li, S.; Pan, Z. Y.; Thamm, D. H.; Miller, R. A. et al. The bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl. Acad. Sci. USA 2010, 107, 13075–13080.
Herman, S. E. M.; Gordon, A. L.; Hertlein, E.; Ramanunni, A.; Zhang, X.; Jaglowski, S.; Flynn, J.; Jones, J.; Blum, K. A.; Buggy, J. J. et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011, 117, 6287–6296.
Di Paolo, J. A.; Huang, T.; Balazs, M.; Barbosa, J.; Barck, K. H.; Bravo, B. J.; Carano, R. A. D.; Darrow, J.; Davies, D. R.; DeForge, L. E. et al. Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat. Chem. Biol. 2011, 7, 41–50.
Pescovitz, M. D.; Greenbaum, C. J.; Krause-Steinrauf, H.; Becker, D. J.; Gitelman, S. E.; Goland, R.; Gottlieb, P. A.; Marks, J. B.; McGee, P. F.; Moran, A. M. et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N. Engl. J. Med. 2009, 361, 2143–2152.
Edwards, J. C. W.; Szczepanski, L.; Szechinski, J.; Filipowicz- Sosnowska, A.; Emery, P.; Close, D. R.; Stevens, R. M.; Shaw, T. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 2004, 350, 2572–2581.
Kardava, L.; Moir, S.; Wang, W.; Ho, J.; Buckner, C. M.; Posada, J. G.; O'Shea, M. A.; Roby, G.; Chen, J.; Sohn, H. W. et al. Attenuation of HIV-associated human B cell exhaustion by siRNA downregulation of inhibitory receptors. J. Clin. Invest. 2011, 121, 2614–2624.
Doudna, J. A.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096.
Chu, V. T.; Graf, R.; Wirtz, T.; Weber, T.; Favret, J.; Li, X.; Petsch, K.; Tran, N. T.; Sieweke, M. H.; Berek, C. et al. Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line. Proc. Natl. Acad. Sci. USA 2016, 113, 12514–12519.
Cheong, T. C.; Compagno, M.; Chiarle, R. Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system. Nat. Commun. 2016, 7, 10934.
Pogson, M.; Parola, C.; Kelton, W. J.; Heuberger, P.; Reddy, S. T. Immunogenomic engineering of a plug-and-(dis)play hybridoma platform. Nat. Commun. 2016, 7, 12535.
Wang, H. X.; Li, M. Q.; Lee, C. M.; Chakraborty, S.; Kim, H. W.; Bao, G.; Leong, K. W. CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chem. Rev. 2017, 117, 9874–9906.
Sun, W. J.; Ji, W. Y.; Hall, J. M.; Hu, Q. Y.; Wang, C.; Beisel, C. L.; Gu, Z. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem., Int. Ed. 2015, 54, 12029–12033.
Yin, H.; Song, C. Q.; Dorkin, J. R.; Zhu, L. H. J.; Li, Y. X.; Wu, Q. Q.; Park, A.; Yang, J.; Suresh, S.; Bizhanova, A. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 2016, 34, 328–333.
Li, L.; Song, L. J.; Liu, X. W.; Yang, X.; Li, X.; He, T.; Wang, N.; Yang, S.; Yu, C.; Yin, T. et al. Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice. ACS Nano 2017, 11, 95–111.
Almeida, J. P.; Lin, A. Y.; Langsner, R. J.; Eckels, P.; Foster, A. E.; Drezek, R. A. In vivo immune cell distribution of gold nanoparticles in naïve and tumor bearing mice. Small 2014, 10, 812–819.
Song, E.; Zhu, P. C.; Lee, S. K.; Chowdhury, D.; Kussman, S.; Dykxhoorn, D. M.; Feng, Y.; Palliser, D.; Weiner, D. B.; Shankar, P. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 2005, 23, 709–717.
McNamara, J. O.; Andrechek, E. R.; Wang, Y.; Viles, K. D.; Rempel, R. E.; Gilboa, E.; Sullenger, B. A.; Giangrande, P. H. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 2006, 24, 1005–1015.
Rozema, D. B.; Lewis, D. L.; Wakefield, D. H.; Wong, S. C.; Klein, J. J.; Roesch, P. L.; Bertin, S. L.; Reppen, T. W.; Chu, Q. L.; Blokhin, A. V. et al. Dynamic polyconjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci. USA 2007, 104, 12982–12987.
Yu, K. T.; Zhou, Y. L.; Li, Y. H.; Sun, X. S.; Sun, F. Y.; Wang, X. M.; Mu, H. Y.; Li, J.; Liu, X. Y.; Teng, L. S. et al. Comparison of three different conjugation strategies in the construction of herceptin-bearing paclitaxel-loaded nanoparticles. Biomater. Sci. 2016, 4, 1219–1232.
Davis, M. E.; Zuckerman, J. E.; Choi, C. H.; Seligson, D.; Tolcher, A.; Alabi, C. A.; Yen, Y.; Heidel, J. D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010, 464, 1067–1070.
Lv, M. M.; Li, X.; Huang, Y.; Wang, N.; Zhu, X. Y.; Sun, J. Inhibition of fibrous dysplasia via blocking Gsa with suramin sodium loaded with an alendronate-conjugated polymeric drug delivery system. Biomater. Sci. 2016, 4, 1113–1122.
Ashley, C. E.; Carnes, E. C.; Phillips, G. K.; Padilla, D.; Durfee, P. N.; Brown, P. A.; Hanna, T. N.; Liu, J. W.; Phillips, B.; Carter, M. B. et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particlesupported lipid bilayers. Nat. Mater. 2011, 10, 389–397.
Keles, E.; Song, Y.; Du, D.; Dong, W. J.; Lin, Y. H. Recent progress in nanomaterials for gene delivery applications. Biomater. Sci. 2016, 4, 1291–1309.
Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 2013, 8, 772–781.
Voigt, J.; Christensen, J.; Shastri, V. P. Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae. Proc. Natl. Acad. Sci. USA 2014, 111, 2942–2947.
Carven, G. J.; Chitta, S.; Hilgert, I.; Rushe, M. M.; Baggio, R. F.; Palmer, M.; Arenas, J. E.; Strominger, J. L.; Horejsi, V.; Santambrogio, L. et al. Monoclonal antibodies specific for the empty conformation of HLA-DR1 reveal aspects of the conformational change associated with peptide binding. J. Biol. Chem. 2004, 279, 16561–16570.
De Koker, S.; Cui, J. W.; Vanparijs, N.; Albertazzi, L.; Grooten, J.; Caruso, F.; De Geest, B. G. Engineering polymer hydrogel nanoparticles for lymph node-targeted delivery. Angew. Chem., Int. Ed. 2016, 55, 1334–1339.
Mueller, S. N.; Tian, S. M.; DeSimone, J. M. Rapid and persistent delivery of antigen by lymph node targeting PRINT nanoparticle vaccine carrier to promote humoral immunity. Mol. Pharmaceutics 2015, 12, 1356–1365.
Chang, T. Z.; Stadmiller, S. S.; Staskevicius, E.; Champion, J. A. Effects of ovalbumin protein nanoparticle vaccine size and coating on dendritic cell processing. Biomater. Sci. 2017, 5, 223–233.
Yang, X. Z.; Dou, S.; Sun, T. M.; Mao, C. Q.; Wang, H. X.; Wang, J. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J. Control. Release 2011, 156, 203–211.
Zhu, K. J.; Lin, X. Z.; Yang, S. L. Preparation, characterization, and properties of polylactide (PLA) poly(ethylene glycol) (PEG) copolymers: A potential-drug carrier. J. Appl. Poly. Sci. 1990, 39, 1–9.
Du, X. J.; Wang, J. L.; Liu, W. W.; Yang, J. X.; Sun, C. Y.; Sun, R.; Li, H. J.; Shen, S.; Luo, Y. L.; Ye, X. D. et al. Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo. Biomaterials 2015, 69, 1–11.
Wang, H. X.; Zuo, Z. Q.; Du, J. Z.; Wang, Y. C.; Sun, R.; Cao, Z. T.; Ye, X. D.; Wang, J. L.; Leong, K. W.; Wang, J. Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today 2016, 11, 133–144.
Mackay, F.; Schneider, P. Cracking the BAFF code. Nat. Rev. Immunol. 2009, 9, 491–502.
Edwards, J. C. W.; Cambridge, G. B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat. Rev. Immunol. 2006, 6, 394–403.
Sanz, I.; Lee, F. E. H. B cells as therapeutic targets in SLE. Nat. Rev. Rheumatol. 2010, 6, 326–337.
Mariño, E.; Silveira, P. A.; Stolp, J.; Grey, S. T. B celldirected therapies in type 1 diabetes. Trends Immunol. 2011, 32, 287–294.
Brightbill, H. D.; Jeet, S.; Lin, Z. H.; Yan, D. H.; Zhou, M. J.; Tan, M.; Nguyen, A.; Yeh, S.; Delarosa, D.; Leong, S. R. et al. Antibodies specific for a segment of human membrane IgE deplete IgE-producing B cells in humanized mice. J. Clin. Invest. 2010, 120, 2218–2229.
Noy, R.; Pollard, J. W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014, 41, 49–61.
Morvan, M. G.; Lanier, L. L. NK cells and cancer: You can teach innate cells new tricks. Nat. Rev. Cancer 2016, 16, 7–19.
Talukdar, S.; Oh, D. Y.; Bandyopadhyay, G.; Li, D. M.; Xu, J. F.; McNelis, J.; Lu, M.; Li, P. P.; Yan, Q. Y.; Zhu, Y. M. et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 2012, 18, 1407–1412.
Li, M.; Sun, R.; Xu, L.; Yin, W. W.; Chen, Y. Y.; Zheng, X. D.; Lian, Z. X.; Wei, H. M.; Tian, Z. G. Kupffer cells support hepatitis B virus-mediated CD8+ T cell exhaustion via hepatitis B core antigen-TLR2 interactions in mice. J. Immunol. 2015, 195, 3100–3109.
Fugger, L.; Friese, M. A.; Bell, J. I. From genes to function: The next challenge to understanding multiple sclerosis. Nat. Rev. Immunol. 2009, 9, 408–417.
Lehuen, A.; Diana, J.; Zaccone, P.; Cooke, A. Immune cell crosstalk in type 1 diabetes. Nat. Rev. Immunol. 2010, 10, 501–513.