Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Despite the excellent merits of lead perovskite solar cells, their instability and toxicity still present a bottleneck for practical applications. Bismuth perovskite has emerged as a candidate for photovoltaic (PV) applications, because it not only has a low toxicity but is also stable in air. However, the power conversion efficiency (PCE) remains an unsolved problem. We performed band gap tuning experiments to improve the efficiency. The absorption of ABi3I10 structure films was extended within the visible region, and the optical band gap was decreased considerably compared to that for Cs3Bi2I9. Furthermore, we explained the correlation between the structure and the optical properties via a first-principles study. A device employing CsBi3I10 as a photoactive layer exhibits a PCE of 1.51% and an excellent ambient stability over 30 days.
Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506-514.
Cho, H.; Jeong, S. -H.; Park, M. -H.; Kim, Y. -H.; Wolf, C.; Lee, C. -L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222-1225.
Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234-1237.
Saliba, M.; Matsui, T.; Domanski, K.; Seo, J. Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J. -P.; Tress, W. R.; Abate, A.; Hagfeldt, A. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354, 206-209.
Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip Toxicol. 2012, 5, 47-58.
Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. -A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B. et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci. 2014, 7, 3061-3068.
Krishnamoorthy, T.; Ding, H.; Yan, C.; Leong, W. L.; Baikie, T.; Zhang, Z. Y.; Sherburne, M.; Li, S. Z.; Asta, M.; Mathews, N. et al. Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 2015, 3, 23829-23832.
Park, B. -W.; Philippe, B.; Zhang, X. L.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 2015, 27, 6806-6813.
Harikesh, P. C.; Mulmudi, H. K.; Ghosh, B.; Goh, T. W.; Teng, Y. T.; Thirumal, K.; Lockrey, M.; Weber, K.; Koh, T. M.; Li, S. Z. et al. Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics. Chem. Mater. 2016, 28, 7496-7504.
Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I. Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex. J. Am. Chem. Soc. 2016, 138, 3974-3977.
Liao, W. Q.; Zhao, D. W.; Yu, Y.; Grice, C. R.; Wang, C. L.; Cimarili, A. J.; Schulz, P.; Meng, W. W.; Zhu, K.; Xiong, R. -G. et al. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 2016, 28, 9333-9340.
Singh, T.; Kulkarni, A.; Ikegami, M.; Miyasaka, T. Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3Bi2I9 for photovoltaic applications. ACS Appl. Mater. Interfaces 2016, 8, 14542-14547.
Hoye, R. L. Z.; Brandt, R. E.; Osherov, A.; Stevanovic, V.; Stranks, S. D.; Wilson, M. W. B.; Kim, H.; Akey, A. J.; Perkins, J. D.; Kurchin, R. C. et al. Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber. Chem. —Eur. J. 2016, 22, 2605-2610.
Lyu, M.; Yun, J. -H.; Cai, M. L.; Jiao, Y. L.; Bernhardt, P. V.; Zhang, M.; Wang, Q.; Du, A. J.; Wang, H. X.; Liu, G. et al. Organic-inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Res. 2016, 9, 692-702.
Öz, S.; Heibig, J. -C.; Jung, E.; Singh, T.; Lepcha, A.; Olthof, S.; Flohre, J.; Gao, Y. J.; German, R.; van Loosdrecht, P. H. M. et al. Zero-dimensional (CH3NH3)3Bi2I9 perovskite for optoelectronic applications. Sol. Energy Mater. Sol. Cells 2016, 158, 195-201.
Johansson, M. B.; Zhu, H. M.; Johansson, E. M. J. Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells. J. Phys. Chem. Lett. 2016, 7, 3467-3471.
Liu, Z. Y.; Sun, B.; Zhong, Y.; Liu, X. Y.; Han, J. H.; Shi, T. L.; Tang, Z. R.; Liao, G. L. Novel integration of carbon counter electrode based perovskite solar cell with thermoelectric generator for efficient solar energy conversion. Nano Energy 2017, 38, 457-466.
Dillon, A. C. Carbon nanotubes for photoconversion and electrical energy storage. Chem. Rev. 2010, 110, 6856-6872.
Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127-3171.
Wu, M. X.; Lin, X.; Wang, T. H.; Qiu, J. S.; Ma, T. L. Lowcost dye-sensitized solar cell based on nine kinds of carbon counter electrodes. Energy Environ. Sci. 2011, 4, 2308-2315.
Acik, M.; Darling, S. B. Graphene in perovskite solar cells: Device design, characterization and implementation. J. Mater. Chem. A 2016, 4, 6185-6235.
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.
Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251-14269.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter. 2010, 22, 022201.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188-5192.
Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 1976, 32, 751-767.
Cuña, A.; Aguiar, I.; Gancharov, A.; Pérez, M.; Fornaro, L. Correlation between growth orientation and growth temperature for bismuth tri-iodide films. Cryst. Res. Technol. 2004, 39, 899-905.
Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (B) 1966, 15, 627-637.
Mei, A. Y.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y. et al. A holeconductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295-298.
Wang, B. X.; Liu, T. F.; Zhou, Y. B.; Chen, X.; Yuan, X. B.; Yang, Y. Y.; Liu, W. P.; Wang, J. M.; Han, H. W.; Tang, Y. W. Hole-conductor-free perovskite solar cells with carbon counter electrodes based on ZnO nanorod arrays. Phys. Chem. Chem. Phys. 2016, 18, 27078-27082.
Li, N.; Lassiter, B. E.; Lunt, R. R.; Wei, G. D.; Forrest, S. R. Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells. Appl. Phys. Lett. 2009, 94, 023307.
Reddy, S. S.; Gunasekar, K.; Heo, J. H.; Im, S. H.; Kim, C. S.; Kim, D. -H.; Moon, J. H.; Lee, J. Y.; Song, M.; Jin, S-H. Highly efficient organic hole transporting materials for perovskite and organic solar cells with long-term stability. Adv. Mater. 2016, 28, 686-693.