Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Molten-salt chemical exfoliation process for preparing two-dimensional mesoporous Si nanosheets as high-rate Li-storage anode

Ying HanJie ZhouTieqiang LiZheng YiNing Lin()Yitai Qian()
Hefei National Laboratory for Physical Science at Microscale and Department of ChemistryUniversity of Science and Technology of ChinaHefei230026China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Two-dimensional (2D) materials have attracted enormous attention due to their functional applications in energy storage. In this work, a low-temperature molten-salt chemical exfoliation methodology is developed for producing free-standing 2D mesoporous Si through deintercalation of CaSi2 in excess molten AlCl3 at 195 ℃. The average dimension of these sheets is 1.5 μm, and the thickness of a single sheet is approximately 10 nm. The as-prepared 2D Si has a Brunauer–Emmett–Teller surface area of 154 m2·g-1 and an average pore size of 5.87 nm. With this unique structure, the 2D Si exhibits superior Li-storage performance, including a reversible capacity of 2, 974 mA·h·g-1 at 0.2 C, reversible capacities of 2, 162, 1, 947, and 1, 527 mA·h·g-1 at 0.8, 2, and 5 C after 200 cycles, and a capacity retention of 357 mA·h·g-1 even at 30 C (90 A·g-1).

Electronic Supplementary Material

Download File(s)
12274_2018_2153_MOESM1_ESM.pdf (1.3 MB)

References

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

2

Song, J. Z.; Xu, L. M.; Li, J. H.; Xue, J.; Dong, Y. H.; Li, X. M.; Zeng, H. B. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 2016, 28, 4861–4869.

3

Zhao, J. J.; Liu, H. S.; Yu, Z. M.; Quhe, R.; Zhou, S.; Wang, Y. Y.; Liu, C. C.; Zhong, H. X.; Han, N. N.; Lu, J. et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24–151.

4

Bianco, E.; Butler, S.; Jiang, S. S.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano 2013, 7, 4414–4421.

5

Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713–2731.

6

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

7

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphenelike two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

8

Kennedy, T.; Brandon, M.; Ryan, K. M. Advances in the application of silicon and germanium nanowires for highperformance lithium-ion batteries. Adv. Mater. 2016, 28, 5696–5704.

9

Lu, Z. Y.; Zhu, J. X.; Sim, D. H.; Zhou, W. W.; Shi, W. H.; Hng, H. H.; Yan, Q. Y. Synthesis of ultrathin silicon nanosheets by using graphene oxide as template. Chem. Mater. 2011, 23, 5293–5295.

10

Huang, X. K.; Yang, J.; Mao, S.; Chang, J. B.; Hallac, P. B.; Fell, C. R.; Metz, B.; Jiang, J. W.; Hurley, P. T.; Chen, J. H. Controllable synthesis of hollow Si anode for long-cyclelife lithium-ion batteries. Adv. Mater. 2014, 26, 4326–4332.

11

Wang, X. H.; Sun, L. M.; Hu, X. N.; Susantyoko, R. A.; Zhang, Q. Ni-Si nanosheet network as high performance anode for Li ion batteries. J. Power Sources 2015, 280, 393–396.

12

Kim, S. W.; Lee, J.; Sung, J. H.; Seo, D.; Kim, I.; Jo, M. H.; Kwon, B. W.; Choi, W. K.; Choi, H. Two-dimensionally grown single-crystal silicon nanosheets with tunable visible-light emissions. ACS Nano 2014, 8, 6556–6562.

13

Huang, X. H.; Zhang, P.; Wu, J. B.; Lin, Y.; Guo, R. Q. Nickel/silicon core/shell nanosheet arrays as electrode materials for lithium ion batteries. Mater. Res. Bull. 2016, 80, 30–35.

14

Kim, U.; Kim, I.; Park, Y.; Lee, K. Y.; Yim, S. Y.; Park, J. G.; Ahn, H. G.; Park, S. H.; Choi, H. J. Synthesis of Si nanosheets by a chemical vapor deposition process and their blue emissions. ACS Nano 2011, 5, 2176–2181.

15

Kim, W. S.; Hwa, Y.; Shin, J. H.; Yang, M.; Sohn, H. J.; Hong, S. H. Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries. Nanoscale 2014, 6, 4297–4302.

16

Ryu, J.; Hong, D. K.; Choi, S.; Park, S. Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes. ACS Nano 2016, 10, 2843–2851.

17

Zhuang, J. C.; Xu, X.; Peleckis, G.; Hao, W. C.; Dou, S. X.; Du, Y. Silicene: A promising anode for lithium-ion batteries. Adv. Mater. 2017, 29, 1606716.

18

Zhao, L. Y.; Dvorak, D. J.; Obrovac, M. N. Layered amorphous silicon as negative electrodes in lithium-ion batteries. J. Power Sources 2016, 332, 290–298.

19

Fu, R. S.; Zhang, K. L.; Zaccaria, R. P.; Huang, H. R.; Xia, Y. G.; Liu, Z. P. Two-dimensional silicon suboxides nanostructures with Si nanodomains confined in amorphous SiO2 derived from siloxene as high performance anode for Li-ion batteries. Nano Energy 2017, 39, 546–553.

20

Zhang, Z. L.; Wang, Y. H.; Ren, W. F.; Tan, Q. Q.; Chen, Y. F.; Li, H.; Zhong, Z. Y.; Su, F. B. Scalable synthesis of interconnected porous silicon/carbon composites by the Rochow reaction as high-performance anodes of lithium ion batteries. Angew. Chem., Int. Ed. 2014, 53, 5165–5169.

21

Terranova, M. L.; Orlanducci, S.; Tamburri, E.; Guglielmotti, V.; Rossi, M. Si/C hybrid nanostructures for Li-ion anodes: An overview. J. Power Sources 2014, 246, 167–177.

22

Zhang, M.; Zhang, T. F.; Ma, Y. F.; Chen, Y. S. Latest development of nanostructured Si/C materials for lithium anode studies and applications. Energy Storage Mater. 2016, 4, 1–14.

23

Du, F. H.; Wang, K. X.; Chen, J. S. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J. Mater. Chem. A 2016, 4, 32–50.

24

Lin, N.; Zhou, J. B.; Wang, L. B.; Zhu, Y. C.; Qian, Y. T. Polyaniline-assisted synthesis of Si@C/RGO as anode material for rechargeable lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 409–414.

25

Kim, H.; Seo, M.; Park, M. H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem., Int. Ed. 2010, 49, 2146–2149.

26

Lin, N.; Han, Y.; Wang, L. B.; Zhou, J. B.; Zhou, J.; Zhu, Y. C.; Qian, Y. T. Preparation of nanocrystalline silicon from SiCl4 at 200 ℃ in molten salt for high-performance anodes for lithium ion batteries. Angew. Chem., Int. Ed. 2015, 54, 3822–3825.

27

Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.

28

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

29

Son, I. H.; Park, J. H.; Kwon, S.; Park, S.; Rümmeli, M. H.; Bachmatiuk, A.; Song, H. J.; Ku, J.; Choi, J. W.; Choi, J. M. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 2015, 6, 7393.

30

Li, B.; Li, S. M.; Xu, J. J.; Yang, S. B. A new configured lithiated silicon-sulfur battery built on 3D graphene with superior electrochemical performances. Energy Environ. Sci. 2016, 9, 2025–2030.

Nano Research
Pages 6294-6303
Cite this article:
Han Y, Zhou J, Li T, et al. Molten-salt chemical exfoliation process for preparing two-dimensional mesoporous Si nanosheets as high-rate Li-storage anode. Nano Research, 2018, 11(12): 6294-6303. https://doi.org/10.1007/s12274-018-2153-2
Metrics & Citations  
Article History
Copyright
Return