AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A topologically substituted boron nitride hybrid aerogel for highly selective CO2 uptake

R. Govindan Kutty1,§Sivaramapanicker Sreejith2,3,§Xianghua Kong4,§Haiyong He1Hong Wang1Junhao Lin5Kazu Suenaga5Chwee Teck Lim2,3,7Yanli Zhao6( )Wei Ji4( )Zheng Liu1( )
Center for Programmable MaterialsSchool of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
Singapore School of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
Center for Advanced 2D Materials and Graphene Research CenterNational University of Singapore6 Science Drive 2Singapore117546Singapore
Biomedical Institute for Global Health Research and TechnologyNational University of Singapore14 Medical DriveSingapore117599Singapore
Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano DevicesRenmin University of ChinaBeijing100872China
National Institute of Advanced Industrial Science and Technology (AIST)AIST Central 5, Tsukuba, 305-8565Japan
Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21-Nanyang LinkSingapore637371Singapore
Department of Biomedical EngineeringNational University of SingaporeSingapore117543Singapore

§R. Govindan Kutty, Sivaramapanicker Sreejith and Xianghua Kong contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

A topologically mediated synthesis of porous boron nitride aerogel has been experimentally and theoretically investigated for carbon dioxide (CO2) uptake. Replacement of the carbon atoms in a precursor aerogel of graphene oxide and carbon nanotubes was achieved using an elemental substitution reaction, to obtain a boron and nitrogen framework. The newly prepared BN aerogel possessed a specific surface area of 716.56 m2/g and exhibited an unprecedented twentyfold increase in CO2 uptake over N2, adsorbing 100 cc/g at 273 K and 80 cc/g in ambient conditions, as verified by adsorption isotherms via the multipoint Brunauer-Emmett-Teller (BET) method. Density functional theory calculations were performed to give hints on the mechanism of such high selectivity of CO2 over N2 adsorption in BN aerogel, which may be due to the interaction between the intrinsic polar nature of B-N bonds and the high quadrupole moment of CO2 over N2.

Electronic Supplementary Material

Download File(s)
12274_2018_2156_MOESM1_ESM.pdf (2.1 MB)

References

1

Pachauri, R. K. Reisinger; IPCC Fifth Assessment Report, Intergovernmental Panel on Climate Change, 2014.

2

Lu, C.; Bai, H.; Wu, B. L.; Su, F. S.; Hwang, J. F. Comparative study of CO2 capture by carbon nanotubes, activated carbon, and zeolites. Energy Fuels 2008, 22, 3050-3056.

3

Kortunov, P. V.; Baugh, L. S.; Siskin, M. Pathways of the chemical reaction of carbon dioxide with ionic liquids and amines in ionic liquid solution. Energy Fuels 2015, 29, 5990-6007.

4

Ram Reddy, M. K.; Xu, Z. P.; Lu, G. Q.; Diniz da Costa, J. C. Layered double hydroxides for CO2 capture: Structure evolution and regeneration. Ind. Eng. Chem. Res. 2006, 45, 7504-7509.

5

Keskin, S.; van Heest, T. M.; Sholl, D. S. Can metal-organic framework materials play a useful role in large-scale carbon dioxide separation? ChemSusChem 2010, 3, 879-891.

6

Thomas, A. Functional materials: From hard to soft porous frameworks. Angew. Chem., Int. Ed. 2010, 49, 8328-8344.

7

Patel, H. A.; Karadas, F.; Canlier, A.; Park, J.; Deniz, E.; Jung, Y.; Atilhan, M.; Yavuz, C. T. High capacity carbon dioxide adsorption by inexpensive covalent organic polymers. J. Mater. Chem. 2012, 22, 8431-8437.

8

Dawson, R.; Cooper, A. I.; Adams, D. J. Nanoporous organic polymer networks. Prog. Polym. Sci. 2012, 37, 530-563.

9

Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334-2375.

10

Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191-214.

11

Yaghi, O. M.; Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705-714.

12

Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939-943.

13

Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O'Keeffe, M.; Yaghi, O. M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58-67.

14

Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O'Keeffe, M.; Yaghi, O. M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 2009, 131, 3875-3877.

15

Torrisi, A.; Bell, R. G.; Mellot-Draznieks, C. Functionalized MOFs for enhanced CO2 capture. Cryst. Growth Des. 2010, 10, 2839-2841.

16

Kizzie, A. C.; Wong-Foy, A. G.; Matzger, A. J. Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. Langmuir 2011, 27, 6368-6373.

17

Wang, Q.; Luo, J. Z.; Zhong, Z. Y.; Borgna, A. CO2 capture by solid adsorbents and their applications: Current status and new trends. Energy Environ. Sci. 2011, 4, 42-55.

18

Liu, J.; Tian, J.; Thallapally, P. K.; McGrail, B. P. Selective CO2 capture from flue gas using metal-organic frameworks-A fixed bed study. J. Phys. Chem. C 2012, 116, 9575-9581.

19

Puxty, G.; Rowland, R.; Allport, A.; Yang, Q.; Bown, M.; Burns, R.; Maeder, M.; Attalla, M. Carbon dioxide postcombustion capture: A novel screening study of the carbon dioxide absorption performance of 76 amines. Environ. Sci. Technol. 2009, 43, 6427-6433.

20

Siriwardane, R. V.; Shen, M. S.; Fisher, E. P.; Poston, J. A. Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 2001, 15, 279-284.

21

Xiang, S. C.; He, Y. B.; Zhang, Z. J.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B. L. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun. 2012, 3, 954.

22

Ahn, S.; Song, H. J.; Park, J. W.; Lee, J. H.; Lee, I. Y.; Jang, K. R. Characterization of metal corrosion by aqueous amino acid salts for the capture of CO2. Korean J. Chem. Eng. 2010, 27, 1576-1580.

23

Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydin, A. Ö.; Hupp, J. T. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 2012, 134, 15016-15021.

24

El-Roz, M.; Bazin, P.; Čelič, T. B.; Logar, N. Z.; Thibault-Starzyk, F. Pore occupancy changes water/ethanol separation in a metal-organic framework-quantitative map of CO adsorption by IR. J. Phys. Chem. C 2015, 119, 22570-22576.

25

Henninger, S. K.; Habib, H. A.; Janiak, C. MOFs as adsorbents for low temperature heating and cooling applications. J. Am. Chem. Soc. 2009, 131, 2776-2777.

26

Jasuja, H.; Zang, J.; Sholl, D. S.; Walton, K. S. Rational tuning of water vapor and CO2 adsorption in highly stable Zr-based MOFs. J. Phys. Chem. C 2012, 116, 23526-23532.

27

An, J.; Shade, C. M.; Chengelis-Czegan, D. A.; Petoud, S; Rosi, N. L. Zinc-adeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J. Am. Chem. Soc. 2011, 133, 1220-1223.

28

Peng, Y.; Srinivas, G.; Wilmer, C. E.; Eryazici, I.; Snurr, R. Q.; Hupp, J. T.; Yildirim, T.; Farha, O. K. Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal-organic framework NU-111. Chem. Commun. 2013, 49, 2992-2994.

29

Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S. Q.; Space, B.; Wojtas, L. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 2013, 495, 80-84.

30

Jin, Y. H.; Voss, B. A.; Jin, A.; Long, H.; Noble, R. D.; Zhang, W. Highly CO2-selective organic molecular cages: What determines the CO2 selectivity. J. Am. Chem. Soc. 2011, 133, 6650-6658.

31

Hao, G. P.; Li, W. C.; Qian, D.; Lu, A. H. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv. Mater. 2010, 22, 853-857.

32

Sevilla, M.; Valle-Vigón, P.; Fuertes, A. B. N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 2011, 21, 2781-2787.

33

Li, X. F.; Xue, Q. Z.; He, D. L.; Zhu, L.; Du, Y. G.; Xing, W.; Zhang, T. Sulfur-nitrogen codoped graphite slit-pore for enhancing selective carbon dioxide adsorption: Insights from molecular simulations. ACS Sustainable Chem. Eng. 2017, 5, 8815-8823.

34

Li, X. F.; Zhu, L.; Xue, Q. Z.; Chang, X.; Ling, C. C.; Xing, W. Superior selective CO2 adsorption of C3N pores: GCMC and DFT simulations. ACS Appl. Mater. Interfaces 2017, 9, 31161-31169.

35

Li, X. F.; Guo, T. C.; Zhu, L.; Ling, C. C.; Xue, Q. Z.; Xing, W. Charge-modulated CO2 capture of C3N nanosheet: Insights from DFT calculations. Chem. Eng. J. 2018, 338, 92-98.

36

Zhao, Y. F.; Liu, X.; Yao, K. X.; Zhao, L.; Han, Y. Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon. Chem. Mater. 2012, 24, 4725-4734.

37

Patel, H. A.; Je, S. H.; Park, J.; Chen, D. P.; Jung, Y.; Yavuz, C. T.; Coskun, A. Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. Nat. Commun. 2013, 4, 1357.

38

Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806-4814.

39

Gong, Y. J.; Shi, G.; Zhang, Z. H.; Zhou, W.; Jung, J.; Gao, W. L.; Ma, L. L.; Yang, Y.; Yang, S. B.; You, G. et al. Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nat. Commun. 2014, 5, 3193.

40

Liu, J. J.; Kutty, R. G.; Zheng, Q. S.; Eswariah, V.; Sreejith, S.; Liu, Z. Hexagonal boron nitride nanosheets as high-performance binder-free fire-resistant wood coatings. Small 2017, 13, 1602456.

41

Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932-934.

42

Song, Y. X.; Li, B.; Yang, S. W.; Ding, G. Q.; Zhang, C. R.; Xie, X. M. Ultralight boron nitride aerogels via template-assisted chemical vapor deposition. Sci. Rep. 2015, 5, 10337.

43

Liu, F.; Mo, X. S.; Gan, H. B.; Guo, T. Y.; Wang, X. B.; Chen, B.; Chen, J.; Deng, S. Z.; Xu, N. S.; Sekiguchi, T. et al. Cheap, gram-scale fabrication of BN nanosheets via substitution reaction of graphite powders and their use for mechanical reinforcement of polymers. Sci. Rep. 2014, 4, 4211.

44

Rousseas, M.; Goldstein, A. P.; Mickelson, W.; Worsley, M. A.; Woo, L.; Zettl, A. Synthesis of highly crystalline sp2- bonded boron nitride aerogels. ACS Nano 2013, 7, 8540-8546.

45

Hinds, B. J.; Chopra, N.; Rantell, T.; Andrews, R.; Gavalas, V.; Bachas, L. G. Aligned multiwalled carbon nanotube membranes. Science 2004, 303, 62-65.

46

Suk, M. E.; Raghunathan, A. V.; Aluru, N. R. Fast reverse osmosis using boron nitride and carbon nanotubes. Appl. Phys. Lett. 2008, 92, 133120.

47

Vinod, S.; Tiwary, C. S.; da Silva, A. P. A.; Taha-Tijerina, J.; Ozden, S.; Chipara, A. C.; Vajtai, R.; Galvao, D. S.; Narayanan, T. N.; Ajayan, P. M. Low-density three-dimensional foam using self-reinforced hybrid two-dimensional atomic layers. Nat. Commun. 2014, 5, 4541.

48

Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209-3215.

49

Marom, N.; Bernstein, J.; Garel, J.; Tkatchenko, A.; Joselevich, E.; Kronik, L.; Hod, O. Stacking and registry effects in layered materials: The case of hexagonal boron nitride. Phys. Rev. Lett. 2010, 105, 046801.

50

Raveendran, P.; Ikushima, Y.; Wallen, S. L. Polar attributes of supercritical carbon dioxide. Acc. Chem. Res. 2005, 38, 478-485.

51

Morrison, M. A.; Hay, P. J. Molecular properties of N2 and CO2 as functions of nuclear geometry: Polarizabilities, quadrupole moments, and dipole moments. J. Chem. Phys. 1979, 70, 4034.

52

Williams, J. H. The molecular electric quadrupole moment and solid-state architecture. Acc. Chem. Res. 1993, 26, 593-598.

53

Lenel, F. V. Uber die Adsorptions warme von Edelgasen und Kohlendioxyd an Ionenkristallen. Physik. Chem. B 1933, 23, 379.

54

Orr, W. J. C. Calculations of the adsorption behaviour of argon on alkali halide crystals. Trans. Faraday Soc. 1939, 35, 1247-1265.

55

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

56

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

57

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

58

Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

59

Lee, K.; Murray, É. D.; Kong, L. Z.; Lundqvist, B. I.; Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 2010, 82, 081101.

60

Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 2010, 22, 022201.

61

Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.

62

Kim, H. Effect of van der Waals interaction on the structural and cohesive properties of black phosphorus. J. Korean Phys. Soc. 2014, 64, 547-553.

63

Wu, J. B.; Hu, Z. X.; Zhang, X.; Han, W. P.; Lu, Y.; Shi, W.; Qiao, X. F.; Ijiäs, M.; Milana, S.; Ji, W. et al. Interface coupling in twisted multilayer graphene by resonant Raman spectroscopy of layer breathing modes. ACS Nano 2015, 9, 7440-7449.

64

Hong, J. H.; Hu, Z. X.; Probert, M.; Li, K.; Lv, D. H.; Yang, X. A.; Gu, L.; Mao, N. N.; Feng, Q. L.; Xie, L. M. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293.

65

Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

66

Hu, Z. X.; Kong, X. H.; Qiao, J. S.; Normand, B.; Ji, W. Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Nanoscale 2016, 8, 2740-2750.

67

Zhao, Y. D.; Qiao, J. S.; Yu, P.; Hu, Z. X.; Lin, Z. Y.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399-2407.

Nano Research
Pages 6325-6335
Cite this article:
Kutty RG, Sreejith S, Kong X, et al. A topologically substituted boron nitride hybrid aerogel for highly selective CO2 uptake. Nano Research, 2018, 11(12): 6325-6335. https://doi.org/10.1007/s12274-018-2156-z

826

Views

17

Crossref

N/A

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 20 January 2018
Revised: 20 July 2018
Accepted: 25 July 2018
Published: 22 August 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return