AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tunable electrochemistry of gold-silver alloy nanoshells

Lorenzo Russo1,2Victor Puntes1,3,4Arben Merkoçi1,4( )
Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Barcelona, Spain
Universitat Autònoma de Barcelona (UAB)Campus UABBellaterra08193Barcelona, Spain
Vall d'Hebron Institut de Recerca (VHIR)08035Barcelona, Spain
Institució Catalana de Recerca i Estudis Avançats (ICREA)P. Lluís Companys 2308010Barcelona, Spain
Show Author Information

Graphical Abstract

Abstract

The widespread and increasing interest in enhancing biosensing technologies by increasing their sensitivities and lowering their costs has led to the exploration and application of complex nanomaterials as signal transducers and enhancers. In this work, the electrochemical properties of monodispersed AuAg alloy nanoshells (NSs) with finely tunable morphology, composition, and size are studied to assess their potential as electroactive labels. The controlled corrosion of their silver content, caused by the oxidizing character of dissolved oxygen and chlorides of the electrolyte, allows the generation of a reproducible electrochemical signal that is easily measurable through voltammetric techniques. Remarkably, the underpotential deposition of dissolved Ag+ catalyzed on AuAg NS surfaces is observed and its dependence on the nanoparticle morphology, size, and elemental composition is studied, revealing a strong correlation between the relative amounts of the two metals. The highest catalytic activity is found at Au/Ag ratios higher than ≈ 10, showing how the synergy between both metals is necessary to trigger the enhancement of Ag+ reduction. The ability of AuAg NSs to generate an electrocatalytic current without the need for any strong acid makes them an extremely promising material for biosensing applications.

Electronic Supplementary Material

Download File(s)
12274_2018_2157_MOESM1_ESM.pdf (542.8 KB)

References

1

Genç, A.; Patarroyo, J.; Sancho-Parramon, J.; Bastús, N. G.; Puntes, V. F.; Arbiol, J. Hollow metal nanostructures for enhanced plasmonics: Synthesis, local plasmonic properties and applications. Nanophotonics 2017, 6, 193-213.

2

Merkoçi, A. Nanoparticles-based strategies for DNA, protein and cell sensors. Biosens. Bioelectron. 2010, 26, 1164-1177.

3

Kumar, A.; Kim, S.; Nam, J. M. Plasmonically engineered nanoprobes for biomedical applications. J. Am. Chem. Soc. 2016, 138, 14509-14525.

4

Qiu, H. -J.; Li, X.; Xu, H. -T.; Zhang, H. -J.; Wang, Y. Nanoporous metal as a platform for electrochemical and optical sensing. J. Mater. Chem. C 2014, 2, 9788-9799.

5

Maltez-da Costa, M.; de la Escosura-Muñiz, A.; Nogués, C.; Barrios, L.; Ibáñez, E.; Merkoçi, A. Simple monitoring of cancer cells using nanoparticles. Nano Lett. 2012, 12, 4164-4171.

6

Perfézou, M.; Turner, A.; Merkoçi, A. Cancer detection using nanoparticle-based sensors. Chem. Soc. Rev. 2012, 41, 2606-2622.

7

Merkoçi, A. Nanoparticles based electroanalysis in diagnostics applications. Electroanalysis 2013, 25, 15-27.

8

de la Escosura-Muñiz, A.; Ambrosi, A.; Merkoçi, A. Electrochemical analysis with nanoparticle-based biosystems. TrAC Trends Anal. Chem. 2008, 27, 568-584.

9

Kelley, S. O.; Mirkin, C. A.; Walt, D. R.; Ismagilov, R. F.; Toner, M.; Sargent, E. H. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length- scale engineering. Nat. Nanotechnol. 2014, 9, 969-980.

10

Wang, X. Y.; Hu, Y. H.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3, 41-60.

11

Byers, C. P.; Zhang, H.; Swearer, D. F.; Yorulmaz, M.; Hoener, B. S.; Huang, D.; Hoggard, A.; Chang, W. -S.; Mulvaney, P.; Ringe, E. et al. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties. Sci. Adv. 2015, 1, e1500988.

12

Zugic, B.; Wang, L.; Heine, C.; Zakharov, D. N.; Lechner, B. A. J.; Stach, E. A.; Biener, J.; Salmeron, M.; Madix, R. J.; Friend, C. M. Dynamic restructuring drives catalytic activity on nanoporous gold-silver alloy catalysts. Nat. Mater. 2017, 16, 558-564.

13

Zheng, Y. Q.; Zeng, J.; Ruditskiy, A.; Liu, M. C.; Xia, Y. N. Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. Chem. Mater. 2014, 26, 22-33.

14

Slater, T. J. A.; Macedo, A.; Schroeder, S. L. M.; Burke, M. G.; O'Brien, P.; Camargo, P. H. C.; Haigh, S. J. Correlating catalytic activity of Ag-Au nanoparticles with 3D compositional variations. Nano Lett. 2014, 14, 1921-1926.

15

Shankar, C.; Dao, A. T. N.; Singh, P.; Higashimine, K.; Mott, D. M.; Maenosono, S. Chemical stabilization of gold coated by silver core-shell nanoparticles via electron transfer. Nanotechnology 2012, 23, 245704.

16

Nishimura, S.; Dao, A. T. N.; Mott, D.; Ebitani, K.; Maenosono, S. X-ray absorption near-edge structure and X-ray photoelectron spectroscopy studies of interfacial charge transfer in gold-silver-gold double-shell nanoparticles. J. Phys. Chem. C 2012, 116, 4511-4516.

17

Lewis, E. A.; Slater, T. J. A.; Prestat, E.; Macedo, A.; O'Brien, P.; Camargo, P. H. C.; Haigh, S. J. Real-time imaging and elemental mapping of AgAu nanoparticle transformations. Nanoscale 2014, 6, 13598-13605.

18

Russo, L.; Merkoçi, F.; Patarroyo, J.; Piella, J.; Merkoçi, A.; Bastús, N. G.; Puntes, V. F. Time- and size-resolved plasmonic evolution with nm resolution of galvanic replacement reaction in AuAg nanoshells synthesis. Chem. Mater. , in press, DOI: 10.1021/acs.chemmater.8b01488.

19

Xia, X. H.; Wang, Y.; Ruditskiy, A.; Xia, Y. N. 25th anniversary article: Galvanic replacement: A simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 2013, 25, 6313-6333.

20

González, E.; Arbiol, J.; Puntes, V. F. Carving at the nanoscale: Sequential galvanic exchange and kirkendall growth at room temperature. Science 2011, 334, 1377-1380.

21

Cobley, C. M.; Xia, Y. N. Engineering the properties of metal nanostructures via galvanic replacement reactions. Mater. Sci. Eng. R: Reports 2010, 70, 44-62.

22

Bastús, N. G.; Merkoçi, F.; Piella, J.; Puntes, V. F. Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties. Chem. Mater. 2014, 26, 2836-2846.

23

Toh, H. S.; Batchelor-McAuley, C.; Tschulik, K.; Compton, R. G. Electrochemical detection of chloride levels in sweat using silver nanoparticles: A basis for the preliminary screening for cystic fibrosis. Analyst 2013, 138, 4292-4297.

24

Tschulik, K.; Batchelor-McAuley, C.; Toh, H. -S.; Stuart, E. J. E.; Compton, R. G. Electrochemical studies of silver nanoparticles: A guide for experimentalists and a perspective. Phys. Chem. Chem. Phys. 2014, 16, 616-623.

25

Liu, R. X.; Guo, J. H.; Ma, G.; Jiang, P.; Zhang, D. H.; Li, D. X.; Chen, L.; Guo, Y. T.; Ge, G. L. Alloyed crystalline Au-Ag hollow nanostructures with high chemical stability and catalytic performance. ACS Appl. Mater. Interfaces 2016, 8, 16833-16844.

26

Kleijn, S. E. F.; Lai, S. C. S.; Koper, M. T. M.; Unwin, P. R. Electrochemistry of nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 3558-3586.

27

Cloake, S. J.; Toh, H. S.; Lee, P. T.; Salter, C.; Johnston, C.; Compton, R. G. Anodic stripping voltammetry of silver nanoparticles: Aggregation leads to incomplete stripping. ChemistryOpen 2015, 4, 22-26.

28

Holt, L. R.; Plowman, B. J.; Young, N. P.; Tschulik, K.; Compton, R. G. The electrochemical characterization of single core-shell nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 397-400.

29

Saw, E. N.; Grasmik, V.; Rurainsky, C.; Epple, M.; Tschulik, K. Electrochemistry at single bimetallic nanoparticles—Using nano impacts for sizing and compositional analysis of individual AgAu alloy nanoparticles. Faraday Discuss. 2016, 193, 327-338.

30

Liu, Z. N.; Huang, L. H.; Zhang, L. L.; Ma, H. Y.; Ding, Y. Electrocatalytic oxidation of D-glucose at nanoporous Au and Au-Ag alloy electrodes in alkaline aqueous solutions. Electrochim. Acta 2009, 54, 7286-7293.

31

Xu, C. X.; Su, J. X.; Xu, X. H.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2007, 129, 42-43.

32

Herrero, E.; Buller, L. J.; Abruña, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 2001, 101, 1897-1930.

33

Rogers, L. B.; Krause, J. C.; Griess, J. C.; Ehrlinger, D. B. The electrodeposition behavior of traces of silver. J. Electrochem. Soc. 1949, 95, 33-46.

34

Lai, G. S.; Wang, L. L.; Wu, J.; Ju, H. X.; Yan, F. Electrochemical stripping analysis of nanogold label-induced silver deposition for ultrasensitive multiplexed detection of tumor markers. Anal. Chim. Acta 2012, 721, 1-6.

35

Chu, X.; Xiang, Z. F.; Fu, X.; Wang, S. P.; Shen, G. L.; Yu, R. Q. Silver-enhanced colloidal gold metalloimmunoassay for Schistosoma japonicum antibody detection. J. Immunol. Methods 2005, 301, 77-88.

36

Zhang, J.; Xiong, Z. B.; Chen, Z. D. Ultrasensitive electrochemical microcystin-LR immunosensor using gold nanoparticle functional polypyrrole microsphere catalyzed silver deposition for signal amplification. Sensors Actuators B: Chem. 2017, 246, 623-630.

37

Price, S. W. T.; Speed, J. D.; Kannan, P.; Russell, A. E. Exploring the first steps in core-shell electrocatalyst preparation: In situ characterization of the underpotential deposition of Cu on supported Au nanoparticles. J. Am. Chem. Soc. 2011, 133, 19448-19458.

38

Mulvaney, P.; Linnert, T.; Henglein, A. Surface chemistry of colloidal silver in aqueous solution: Observations on chemisorption and reactivity. J. Phys. Chem. 1991, 95, 7843-7846.

39

He, W. W.; Wu, X. C.; Liu, J. B.; Hu, X. N.; Zhang, K.; Hou, S.; Zhou, W. Y.; Xie, S. S. Design of AgM bimetallic alloy nanostructures (M = Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem. Mater. 2010, 22, 2988-2994.

40

Tominaga, M.; Shimazoe, T.; Nagashima, M.; Kusuda, H.; Kubo, A.; Kuwahara, Y.; Taniguchi, I. Electrocatalytic oxidation of glucose at gold-silver alloy, silver and gold nanoparticles in an alkaline solution. J. Electroanal. Chem. 2006, 590, 37-46.

41

Scanlon, M. D.; Peljo, P.; Méndez, M. A.; Smirnov, E.; Girault, H. H. Charging and discharging at the nanoscale: Fermi level equilibration of metallic nanoparticles. Chem. Sci. 2015, 6, 2705-2720.

42

Prodan, E.; Nordlander, P. Plasmon hybridization in spherical nanoparticles. J. Chem. Phys. 2004, 120, 5444-5454.

43

Mahmoud, M. A.; El-Sayed, M. A. Gold nanoframes: Very high surface plasmon fields and excellent near-infrared sensors. J. Am. Chem. Soc. 2010, 132, 12704-12710.

Nano Research
Pages 6336-6345
Cite this article:
Russo L, Puntes V, Merkoçi A. Tunable electrochemistry of gold-silver alloy nanoshells. Nano Research, 2018, 11(12): 6336-6345. https://doi.org/10.1007/s12274-018-2157-y

708

Views

9

Crossref

N/A

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 27 May 2018
Revised: 04 July 2018
Accepted: 27 July 2018
Published: 07 August 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return