Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Tip-enhanced Raman scattering (TERS) can be used for the structural and chemical characterization of materials with a nanoscale resolution, and offers numerous advantages compared to other forms of imaging. We use TERS to track the local structural features of a CVD-grown graphene monolayer. Ag nanoparticles were added to AFM probes using ion-beam sputtering in order to make them TERS-active. Such modification provides probes with large factors of enhancement and good reproducibility. TERS measurements on graphene show an emergence of a defect-induced D-Raman band and a strain-induced shoulder of the graphene's G-band. Comparison of TERS results with micro-Raman for oxidized graphene suggests that local oxidation occurs with the introduction of sp3 defects, under TERS conditions.
Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: New York, USA, 2006.
Domke, K. F.; Zhang, D.; Pettinger, B. Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au(111). J. Am. Chem. Soc. 2007, 129, 6708-6709.
Zhang, W. H.; Yeo, B. S.; Schmid, T.; Zenobi, R. Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 2007, 111, 1733-1738.
Sonntag, M. D.; Klingsporn, J. M.; Garibay, L. K.; Roberts, J. M.; Dieringer, J. A.; Seideman, T.; Scheidt, K. A.; Jensen, L.; Schatz, G. C.; van Duyne, R. P. Single-molecule tip- enhanced Raman spectroscopy. J. Phys. Chem. C 2012, 116, 478-483.
Liu, Z.; Ding, S. Y.; Chen, Z. B.; Wang, X.; Tian, J. H.; Anema, J. R.; Zhou, X. S.; Wu, D. Y.; Mao, B. W.; Xu, X. et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun. 2011, 2, 305.
Steidtner, J.; Pettinger, B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 2008, 100, 236101.
Sonntag, M. D.; Chulhai, D.; Seideman, T.; Jensen, L.; van Duyne, R. P. The origin of relative intensity fluctuations in single-molecule tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2013, 135, 17187-17192.
Bailo, E.; Deckert, V. Tip-enhanced Raman spectroscopy of single RNA strands: Towards a novel direct-sequencing method. Angew. Chem., Int. Ed. 2008, 47, 1658-1661.
Krasnoslobodtsev, A. V.; Deckert-Gaudig, T.; Zhang, Y. L.; Deckert, V.; Lyubchenko, Y. L. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and tip-enhanced Raman scattering studies. Ultramicroscopy 2016, 165, 26-33.
Kurouski, D.; Deckert-Gaudig, T.; Deckert, V.; Lednev, I. K. Structure and composition of insulin fibril surfaces probed by TERS. J. Am. Chem. Soc. 2012, 134, 13323-13329.
Krasnoslobodtsev, A. V.; Portillo, A. M.; Deckert-Gaudig, T.; Deckert, V.; Lyubchenko, Y. L. Nanoimaging for prion related diseases. Prion 2010, 4, 265-274.
Böhme, R.; Richter, M.; Cialla, D.; Rösch, P.; Deckert, V.; Popp, J. Towards a specific characterisation of components on a cell surface—combined TERS-investigations of lipids and human cells. J. Raman Spectrosc. 2009, 40, 1452-1457.
Richter, M.; Hedegaard, M.; Deckert-Gaudig, T.; Deckert, V. Multivariate analysis of TERS maps on a single human colon cancer cell. AIP Conf. Proc. 2010, 1267, 1245-1246.
Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902-907.
Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Mechanical properties of graphene and graphene-based nanocomposites. Progr. Mater. Sci. 2017, 90, 75-127.
Boukhvalov, D. W.; Katsnelson, M. I. Modeling of graphite oxide. J. Am. Chem. Soc. 2008, 130, 10697-10701.
Gupta, V.; Sharma, N.; Singh, U.; Arif, M.; Singh, A. Higher oxidation level in graphene oxide. Optik 2017, 143, 115-124.
Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925-3930.
Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36-41.
Wei, L. M.; Wu, F.; Shi, D. W.; Hu, C. C.; Li, X. L.; Yuan, W. E.; Wang, J.; Zhao, J.; Geng, H. J.; Wei, H. et al. Spontaneous intercalation of long-chain alkyl ammonium into edge-selectively oxidized graphite to efficiently produce high-quality graphene. Sci. Rep. 2013, 3, 2636.
Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.
Chacón-Torres, J. C.; Wirtz, L.; Pichler, T. Manifestation of charged and strained graphene layers in the Raman response of graphite intercalation compounds. ACS Nano 2013, 7, 9249-9259.
Goldsche, M.; Sonntag, J.; Khodkov, T.; Verbiest, G. J.; Reichardt, S.; Neumann, C.; Ouaj, T.; von den Driesch, N.; Buca, D.; Stampfer, C. Tailoring mechanically tunable strain fields in graphene. Nano Lett. 2018, 18, 1707-1713.
Kaniyoor, A.; Ramaprabhu, S. A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2012, 2, 032183.
López-Díaz, D.; López Holgado, M.; García-Fierro, J. L.; Velázquez, M. M. Evolution of the Raman spectrum with the chemical composition of graphene oxide. J. Phys. Chem. C 2017, 121, 20489-20497.
Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210-215.
Stampfer, C.; Molitor, F.; Graf, D.; Ensslin, K.; Jungen, A.; Hierold, C.; Wirtz, L. Raman imaging of doping domains in graphene on SiO2. Appl. Phys. Lett. 2007, 91, 241907.
Wang, Q. H.; Shih, C. -J.; Paulus, G. L. C.; Strano, M. S. Evolution of physical and electronic structures of bilayer graphene upon chemical functionalization. J. Am. Chem. Soc. 2013, 135, 18866-18875.
Beams, R. Tip-enhanced Raman scattering of graphene. J. Raman Spectrosc. 2018, 49, 157-167.
Snitka, V.; Rodrigues, R. D.; Lendraitis, V. Novel gold cantilever for nano-Raman spectroscopy of graphene. Microelectron. Eng. 2011, 88, 2759-2762.
Chen, C.; Hayazawa, N.; Kawata, S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 2014, 5, 3312.
Stadler, J.; Schmid, T.; Zenobi, R. Nanoscale chemical imaging of single-layer graphene. ACS Nano 2011, 5, 8442-8448.
Vlassiouk, I.; Smirnov, S.; Regmi, M.; Surwade, S. P.; Srivastava, N.; Feenstra, R.; Eres, G.; Parish, C.; Lavrik, N.; Datskos, P. et al. Graphene nucleation density on copper: Fundamental role of background pressure. J. Phys. Chem. C 2013, 117, 18919-18926.
Vlassiouk, I.; Fulvio, P.; Meyer, H.; Lavrik, N.; Dai, S.; Datskos, P.; Smirnov, S. Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 2013, 54, 58-67.
Strelchuk, V. V.; Nikolenko, A. S.; Gubanov, V. O.; Biliy, M. M.; Bulavin, L. A. Dispersion of electron-phonon resonances in one-layer graphene and its demonstration in micro-Raman scattering. J. Nanosci. Nanotechnol. 2012, 12, 8671-8675.
Cancado, L. G.; Pimenta, M. A.; Neves, B. R. A.; Dantas, M. S. S.; Jorio, A. Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 2004, 93, 247401.
Shan, C. S.; Tang, H.; Wong, T.; He, L. F.; Lee, S. -T. Facile synthesis of a large quantity of graphene by chemical vapor deposition: An advanced catalyst carrier. Adv. Mater. 2012, 24, 2491-2495.
Luo, Z. Q.; Cong, C. X.; Zhang, J.; Xiong, Q. H.; Yu, T. The origin of sub-bands in the Raman D-band of graphene. Carbon 2012, 50, 4252-4258.
Cancado, L. G.; Jorio, A.; Ferreira, E. H.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190-3196.
Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592-1597.
Zandiatashbar, A.; Lee, G. H.; An, S. J.; Lee, S.; Mathew, N.; Terrones, M.; Hayashi, T.; Picu, C. R.; Hone, J.; Koratkar, N. Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 2014, 5, 3186.
Ma, J. W.; Habrioux, A.; Luo, Y.; Ramos-Sanchez, G.; Calvillo, L.; Granozzi, G.; Balbuena, P. B.; Alonso-Vante, N. Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: Effect on the oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 11891-11904.
Ahn, G. H.; Kim, H. R.; Hong, B. H.; Ryu, S. M. Raman spectroscopy study on the reactions of UV-generated oxygen atoms with single-layer graphene on SiO2/Si substrates. Carbon Lett. 2012, 13, 34-38.
Vecera, P.; Chacón-Torres, J. C.; Pichler, T.; Reich, S.; Soni, H. R.; Görling, A.; Edelthalhammer, K.; Peterlik, H.; Hauke, F.; Hirsch, A. Precise determination of graphene functionalization by in situ Raman spectroscopy. Nat. Commun. 2017, 8, 15192.
Shroder, R. E.; Nemanich, R. J.; Glass, J. T. Analysis of the composite structures in diamond thin films by Raman spectroscopy. Phys. Rev. B 1990, 41, 3738-3745.
Huang, M. Y.; Yan, H. G.; Chen, C. Y.; Song, D. H.; Heinz, T. F.; Hone, J. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2009, 106, 7304-7308.
Schmid, T.; Yeo, B. -S.; Leong, G.; Stadler, J.; Zenobi, R. Performing tip-enhanced Raman spectroscopy in liquids. J. Raman Spectrosc. 2009, 40, 1392-1399.
Beams, R.; Cancado, L. G.; Novotny, L. Low temperature Raman study of the electron coherence length near graphene edges. Nano Lett. 2011, 11, 1177-1181.
Lee, J.; Shim, S.; Kim, B.; Shin, H. S. Surface-enhanced Raman scattering of single- and few-layer graphene by the deposition of gold nanoparticles. Chem. -Eur. J. 2011, 17, 2381-2387.
Maximiano, R. V.; Beams, R.; Novotny, L.; Jorio, A.; Cançado, L. G. Mechanism of near-field Raman enhancement in two-dimensional systems. Phys. Rev. B 2012, 85, 235434.
Jensen, T. R.; Duval, M. L.; Kelly, K. L.; Lazarides, A. A.; Schatz, G. C.; van Duyne, R. P. Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B 1999, 103, 9846-9853.
Félidj, N.; Aubard, J.; Lévi, G.; Krenn, J. R.; Hohenau, A.; Schider, G.; Leitner, A.; Aussenegg, F. R. Optimized surface- enhanced Raman scattering on gold nanoparticle arrays. Appl. Phys. Lett. 2003, 82, 3095-3097.
Sow, I.; Grand, J.; Lévi, G.; Aubard, J.; Félidj, N.; Tinguely, J. C.; Hohenau, A.; Krenn, J. R. Revisiting surface-enhanced Raman scattering on realistic lithographic gold nanostripes. J. Phys. Chem. C 2013, 117, 25650-25658.
Wang, P.; Zhang, W.; Liang, O.; Pantoja, M.; Katzer, J.; Schroeder, T.; Xie, Y. -H. Giant optical response from graphene-plasmonic system. ACS Nano 2012, 6, 6244-6249.
Su, W. T.; Kumar, N.; Dai, N.; Roy, D. Nanoscale mapping of intrinsic defects in single-layer graphene using tip-enhanced Raman spectroscopy. Chem. Commun. 2016, 52, 8227-8230.
Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189-193.
Wang, J. J.; Saito, Y.; Batchelder, D. N.; Kirkham, J.; Robinson, C.; Smith, D. A. Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy. Appl. Phys. Lett. 2005, 86, 263111.
Ratinac, K. R.; Yang, W. R.; Ringer, S. P.; Braet, F. Toward ubiquitous environmental gas sensors—capitalizing on the promise of graphene. Environ. Sci. Technol. 2010, 44, 1167-1176.
Wei, Z. Q.; Wang, D. B.; Kim, S.; Kim, S. -Y.; Hu, Y. K.; Yakes, M. K.; Laracuente, A. R.; Dai, Z. T.; Marder, S. R.; Berger, C. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 2010, 328, 1373-1376.
Wu, X. S.; Sprinkle, M.; Li, X. B.; Ming, F.; Berger, C.; de Heer, W. A. Epitaxial-graphene/graphene-oxide junction: An essential step towards epitaxial graphene electronics. Phys. Rev. Lett. 2008, 101, 026801.
Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015-1024.
Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z. Q.; Sheehan, P. E. Reduced graphene oxide molecular sensors. Nano Lett. 2008, 8, 3137-3140.
Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537-1541.
Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498- 3502.
Zhou, S.; Bongiorno, A. Origin of the chemical and kinetic stability of graphene oxide. Sci. Rep. 2013, 3, 2484.
Lv, G. Q.; Wang, H. L.; Yang, Y. X.; Deng, T. S.; Chen, C. M.; Zhu, Y. L.; Hou, X. L. Graphene oxide: A convenient metal-free carbocatalyst for facilitating aerobic oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran. ACS Catal. 2015, 5, 5636-5646.
Park, S.; Lee, K. -S.; Bozoklu, G.; Cai, W. W.; Nguyen, S. T.; Ruoff, R. S. Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross- linking. ACS Nano 2008, 2, 572-578.
Suk, J. W.; Piner, R. D.; An, J.; Ruoff, R. S. Mechanical properties of monolayer graphene oxide. ACS Nano 2010, 4, 6557-6564.