AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanoscopic imaging of oxidized graphene monolayer using tip-enhanced Raman scattering

Joseph M. SmolskyAlexey V. Krasnoslobodtsev( )
Department of PhysicsUniversity of Nebraska at Omaha6001 Dodge StreetOmahaNE68182USA
Show Author Information

Graphical Abstract

Abstract

Tip-enhanced Raman scattering (TERS) can be used for the structural and chemical characterization of materials with a nanoscale resolution, and offers numerous advantages compared to other forms of imaging. We use TERS to track the local structural features of a CVD-grown graphene monolayer. Ag nanoparticles were added to AFM probes using ion-beam sputtering in order to make them TERS-active. Such modification provides probes with large factors of enhancement and good reproducibility. TERS measurements on graphene show an emergence of a defect-induced D-Raman band and a strain-induced shoulder of the graphene's G-band. Comparison of TERS results with micro-Raman for oxidized graphene suggests that local oxidation occurs with the introduction of sp3 defects, under TERS conditions.

Electronic Supplementary Material

Download File(s)
12274_2018_2158_MOESM1_ESM.pdf (698.2 KB)

References

1

Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: New York, USA, 2006.

2

Domke, K. F.; Zhang, D.; Pettinger, B. Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au(111). J. Am. Chem. Soc. 2007, 129, 6708-6709.

3

Zhang, W. H.; Yeo, B. S.; Schmid, T.; Zenobi, R. Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 2007, 111, 1733-1738.

4

Sonntag, M. D.; Klingsporn, J. M.; Garibay, L. K.; Roberts, J. M.; Dieringer, J. A.; Seideman, T.; Scheidt, K. A.; Jensen, L.; Schatz, G. C.; van Duyne, R. P. Single-molecule tip- enhanced Raman spectroscopy. J. Phys. Chem. C 2012, 116, 478-483.

5

Liu, Z.; Ding, S. Y.; Chen, Z. B.; Wang, X.; Tian, J. H.; Anema, J. R.; Zhou, X. S.; Wu, D. Y.; Mao, B. W.; Xu, X. et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun. 2011, 2, 305.

6

Steidtner, J.; Pettinger, B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 2008, 100, 236101.

7

Sonntag, M. D.; Chulhai, D.; Seideman, T.; Jensen, L.; van Duyne, R. P. The origin of relative intensity fluctuations in single-molecule tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2013, 135, 17187-17192.

8

Bailo, E.; Deckert, V. Tip-enhanced Raman spectroscopy of single RNA strands: Towards a novel direct-sequencing method. Angew. Chem., Int. Ed. 2008, 47, 1658-1661.

9

Krasnoslobodtsev, A. V.; Deckert-Gaudig, T.; Zhang, Y. L.; Deckert, V.; Lyubchenko, Y. L. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and tip-enhanced Raman scattering studies. Ultramicroscopy 2016, 165, 26-33.

10

Kurouski, D.; Deckert-Gaudig, T.; Deckert, V.; Lednev, I. K. Structure and composition of insulin fibril surfaces probed by TERS. J. Am. Chem. Soc. 2012, 134, 13323-13329.

11

Krasnoslobodtsev, A. V.; Portillo, A. M.; Deckert-Gaudig, T.; Deckert, V.; Lyubchenko, Y. L. Nanoimaging for prion related diseases. Prion 2010, 4, 265-274.

12

Böhme, R.; Richter, M.; Cialla, D.; Rösch, P.; Deckert, V.; Popp, J. Towards a specific characterisation of components on a cell surface—combined TERS-investigations of lipids and human cells. J. Raman Spectrosc. 2009, 40, 1452-1457.

13

Richter, M.; Hedegaard, M.; Deckert-Gaudig, T.; Deckert, V. Multivariate analysis of TERS maps on a single human colon cancer cell. AIP Conf. Proc. 2010, 1267, 1245-1246.

14

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902-907.

15

Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Mechanical properties of graphene and graphene-based nanocomposites. Progr. Mater. Sci. 2017, 90, 75-127.

16

Boukhvalov, D. W.; Katsnelson, M. I. Modeling of graphite oxide. J. Am. Chem. Soc. 2008, 130, 10697-10701.

17

Gupta, V.; Sharma, N.; Singh, U.; Arif, M.; Singh, A. Higher oxidation level in graphene oxide. Optik 2017, 143, 115-124.

18

Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925-3930.

19

Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36-41.

20

Wei, L. M.; Wu, F.; Shi, D. W.; Hu, C. C.; Li, X. L.; Yuan, W. E.; Wang, J.; Zhao, J.; Geng, H. J.; Wei, H. et al. Spontaneous intercalation of long-chain alkyl ammonium into edge-selectively oxidized graphite to efficiently produce high-quality graphene. Sci. Rep. 2013, 3, 2636.

21

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

22

Chacón-Torres, J. C.; Wirtz, L.; Pichler, T. Manifestation of charged and strained graphene layers in the Raman response of graphite intercalation compounds. ACS Nano 2013, 7, 9249-9259.

23

Goldsche, M.; Sonntag, J.; Khodkov, T.; Verbiest, G. J.; Reichardt, S.; Neumann, C.; Ouaj, T.; von den Driesch, N.; Buca, D.; Stampfer, C. Tailoring mechanically tunable strain fields in graphene. Nano Lett. 2018, 18, 1707-1713.

24

Kaniyoor, A.; Ramaprabhu, S. A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2012, 2, 032183.

25

López-Díaz, D.; López Holgado, M.; García-Fierro, J. L.; Velázquez, M. M. Evolution of the Raman spectrum with the chemical composition of graphene oxide. J. Phys. Chem. C 2017, 121, 20489-20497.

26

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210-215.

27

Stampfer, C.; Molitor, F.; Graf, D.; Ensslin, K.; Jungen, A.; Hierold, C.; Wirtz, L. Raman imaging of doping domains in graphene on SiO2. Appl. Phys. Lett. 2007, 91, 241907.

28

Wang, Q. H.; Shih, C. -J.; Paulus, G. L. C.; Strano, M. S. Evolution of physical and electronic structures of bilayer graphene upon chemical functionalization. J. Am. Chem. Soc. 2013, 135, 18866-18875.

29

Beams, R. Tip-enhanced Raman scattering of graphene. J. Raman Spectrosc. 2018, 49, 157-167.

30

Snitka, V.; Rodrigues, R. D.; Lendraitis, V. Novel gold cantilever for nano-Raman spectroscopy of graphene. Microelectron. Eng. 2011, 88, 2759-2762.

31

Chen, C.; Hayazawa, N.; Kawata, S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 2014, 5, 3312.

32

Stadler, J.; Schmid, T.; Zenobi, R. Nanoscale chemical imaging of single-layer graphene. ACS Nano 2011, 5, 8442-8448.

33

Vlassiouk, I.; Smirnov, S.; Regmi, M.; Surwade, S. P.; Srivastava, N.; Feenstra, R.; Eres, G.; Parish, C.; Lavrik, N.; Datskos, P. et al. Graphene nucleation density on copper: Fundamental role of background pressure. J. Phys. Chem. C 2013, 117, 18919-18926.

34

Vlassiouk, I.; Fulvio, P.; Meyer, H.; Lavrik, N.; Dai, S.; Datskos, P.; Smirnov, S. Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 2013, 54, 58-67.

35

Strelchuk, V. V.; Nikolenko, A. S.; Gubanov, V. O.; Biliy, M. M.; Bulavin, L. A. Dispersion of electron-phonon resonances in one-layer graphene and its demonstration in micro-Raman scattering. J. Nanosci. Nanotechnol. 2012, 12, 8671-8675.

36

Cancado, L. G.; Pimenta, M. A.; Neves, B. R. A.; Dantas, M. S. S.; Jorio, A. Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 2004, 93, 247401.

37

Shan, C. S.; Tang, H.; Wong, T.; He, L. F.; Lee, S. -T. Facile synthesis of a large quantity of graphene by chemical vapor deposition: An advanced catalyst carrier. Adv. Mater. 2012, 24, 2491-2495.

38

Luo, Z. Q.; Cong, C. X.; Zhang, J.; Xiong, Q. H.; Yu, T. The origin of sub-bands in the Raman D-band of graphene. Carbon 2012, 50, 4252-4258.

39

Cancado, L. G.; Jorio, A.; Ferreira, E. H.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190-3196.

40

Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592-1597.

41

Zandiatashbar, A.; Lee, G. H.; An, S. J.; Lee, S.; Mathew, N.; Terrones, M.; Hayashi, T.; Picu, C. R.; Hone, J.; Koratkar, N. Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 2014, 5, 3186.

42

Ma, J. W.; Habrioux, A.; Luo, Y.; Ramos-Sanchez, G.; Calvillo, L.; Granozzi, G.; Balbuena, P. B.; Alonso-Vante, N. Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: Effect on the oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 11891-11904.

43

Ahn, G. H.; Kim, H. R.; Hong, B. H.; Ryu, S. M. Raman spectroscopy study on the reactions of UV-generated oxygen atoms with single-layer graphene on SiO2/Si substrates. Carbon Lett. 2012, 13, 34-38.

44

Vecera, P.; Chacón-Torres, J. C.; Pichler, T.; Reich, S.; Soni, H. R.; Görling, A.; Edelthalhammer, K.; Peterlik, H.; Hauke, F.; Hirsch, A. Precise determination of graphene functionalization by in situ Raman spectroscopy. Nat. Commun. 2017, 8, 15192.

45

Shroder, R. E.; Nemanich, R. J.; Glass, J. T. Analysis of the composite structures in diamond thin films by Raman spectroscopy. Phys. Rev. B 1990, 41, 3738-3745.

46

Huang, M. Y.; Yan, H. G.; Chen, C. Y.; Song, D. H.; Heinz, T. F.; Hone, J. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2009, 106, 7304-7308.

47

Schmid, T.; Yeo, B. -S.; Leong, G.; Stadler, J.; Zenobi, R. Performing tip-enhanced Raman spectroscopy in liquids. J. Raman Spectrosc. 2009, 40, 1392-1399.

48

Beams, R.; Cancado, L. G.; Novotny, L. Low temperature Raman study of the electron coherence length near graphene edges. Nano Lett. 2011, 11, 1177-1181.

49

Lee, J.; Shim, S.; Kim, B.; Shin, H. S. Surface-enhanced Raman scattering of single- and few-layer graphene by the deposition of gold nanoparticles. Chem. -Eur. J. 2011, 17, 2381-2387.

50

Maximiano, R. V.; Beams, R.; Novotny, L.; Jorio, A.; Cançado, L. G. Mechanism of near-field Raman enhancement in two-dimensional systems. Phys. Rev. B 2012, 85, 235434.

51

Jensen, T. R.; Duval, M. L.; Kelly, K. L.; Lazarides, A. A.; Schatz, G. C.; van Duyne, R. P. Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B 1999, 103, 9846-9853.

52

Félidj, N.; Aubard, J.; Lévi, G.; Krenn, J. R.; Hohenau, A.; Schider, G.; Leitner, A.; Aussenegg, F. R. Optimized surface- enhanced Raman scattering on gold nanoparticle arrays. Appl. Phys. Lett. 2003, 82, 3095-3097.

53

Sow, I.; Grand, J.; Lévi, G.; Aubard, J.; Félidj, N.; Tinguely, J. C.; Hohenau, A.; Krenn, J. R. Revisiting surface-enhanced Raman scattering on realistic lithographic gold nanostripes. J. Phys. Chem. C 2013, 117, 25650-25658.

54

Wang, P.; Zhang, W.; Liang, O.; Pantoja, M.; Katzer, J.; Schroeder, T.; Xie, Y. -H. Giant optical response from graphene-plasmonic system. ACS Nano 2012, 6, 6244-6249.

55

Su, W. T.; Kumar, N.; Dai, N.; Roy, D. Nanoscale mapping of intrinsic defects in single-layer graphene using tip-enhanced Raman spectroscopy. Chem. Commun. 2016, 52, 8227-8230.

56

Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189-193.

57

Wang, J. J.; Saito, Y.; Batchelder, D. N.; Kirkham, J.; Robinson, C.; Smith, D. A. Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy. Appl. Phys. Lett. 2005, 86, 263111.

58

Ratinac, K. R.; Yang, W. R.; Ringer, S. P.; Braet, F. Toward ubiquitous environmental gas sensors—capitalizing on the promise of graphene. Environ. Sci. Technol. 2010, 44, 1167-1176.

59

Wei, Z. Q.; Wang, D. B.; Kim, S.; Kim, S. -Y.; Hu, Y. K.; Yakes, M. K.; Laracuente, A. R.; Dai, Z. T.; Marder, S. R.; Berger, C. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 2010, 328, 1373-1376.

60

Wu, X. S.; Sprinkle, M.; Li, X. B.; Ming, F.; Berger, C.; de Heer, W. A. Epitaxial-graphene/graphene-oxide junction: An essential step towards epitaxial graphene electronics. Phys. Rev. Lett. 2008, 101, 026801.

61

Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015-1024.

62

Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z. Q.; Sheehan, P. E. Reduced graphene oxide molecular sensors. Nano Lett. 2008, 8, 3137-3140.

63

Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537-1541.

64

Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498- 3502.

65

Zhou, S.; Bongiorno, A. Origin of the chemical and kinetic stability of graphene oxide. Sci. Rep. 2013, 3, 2484.

66

Lv, G. Q.; Wang, H. L.; Yang, Y. X.; Deng, T. S.; Chen, C. M.; Zhu, Y. L.; Hou, X. L. Graphene oxide: A convenient metal-free carbocatalyst for facilitating aerobic oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran. ACS Catal. 2015, 5, 5636-5646.

67

Park, S.; Lee, K. -S.; Bozoklu, G.; Cai, W. W.; Nguyen, S. T.; Ruoff, R. S. Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross- linking. ACS Nano 2008, 2, 572-578.

68

Suk, J. W.; Piner, R. D.; An, J.; Ruoff, R. S. Mechanical properties of monolayer graphene oxide. ACS Nano 2010, 4, 6557-6564.

Nano Research
Pages 6346-6359
Cite this article:
Smolsky JM, Krasnoslobodtsev AV. Nanoscopic imaging of oxidized graphene monolayer using tip-enhanced Raman scattering. Nano Research, 2018, 11(12): 6346-6359. https://doi.org/10.1007/s12274-018-2158-x

714

Views

13

Crossref

N/A

Web of Science

15

Scopus

3

CSCD

Altmetrics

Received: 13 March 2018
Revised: 16 July 2018
Accepted: 27 July 2018
Published: 08 August 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return