Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As an attempt to minimize the usage amounts of noble metals in catalysis, PtAg alloy nanocrystals with a porous nanosheet morphology were fabricated through a galvanic replacement reaction. During the reaction, ascorbic acid was added to the solution to protect the Ag triangular nanoplates from being totally etched. Structural characterizations indicated that the obtained nanocrystals had thin porous basal planes and winding edges with abundant bulges. Such unique two-dimensional porous architectures endowed this nanomaterial with plenty of catalytically active sites and structural benefits in electron and mass moving, as well as morphology stability. Electrochemical tests proved that the PtAg porous nanosheets had superior catalytic activity and durability towards methanol electrooxidation in basic media. Specifically, the mass and specific activities of the PtAg porous nanosheets were 4.5 and 2.7 times higher than those of a commercial Pt/C catalyst. In addition to the special structures, the introduction of Ag enhanced the catalytic performances of the PtAg porous nanosheets.
Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.
Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.; Wang, H. J.; Wilkinson, D. P. A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 2006, 155, 95-110.
Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183-4206.
Shang, C. S.; Hong, W.; Guo, Y. X.; Wang, J.; Wang, E. K. One-step synthesis of platinum nanochain networks toward methanol electrooxidation. ChemElectroChem 2016, 3, 2093-2099.
Feng, Q. C.; Zhao, S.; He, D. S.; Tian, S. B.; Gu, L.; Wen, X. D.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 2018, 140, 2773-2776.
Sulaiman, J. E.; Zhu, S. Q.; Xing, Z. L.; Chang, Q. W.; Shao, M. H. Pt-Ni octahedra as electrocatalysts for the ethanol electro-oxidation reaction. ACS Catal. 2017, 7, 5134-5141.
Qiu, X. Y.; Zhang, H. Y.; Wu, P. S.; Zhang, F. Q.; Wei, S. H.; Sun, D. M.; Xu, L.; Tang, Y. W. One-pot synthesis of freestanding porous palladium nanosheets as highly efficient electrocatalysts for formic acid oxidation. Adv. Funct. Mater. 2017, 27, 1603852.
Hong, W.; Wang, J.; Wang, E. K. RuTe/M (M = Pt, Pd) nanoparticle nanotubes with enhanced electrocatalytic activity. J. Mater. Chem. A 2015, 3, 13642-13647.
Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302-1305.
Guo, S. J.; Dong, S. J.; Wang, E. K. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 2010, 4, 547-555.
Ge, J. J.; Wei, P.; Wu, G.; Liu, Y. D.; Yuan, T. W.; Li, Z. J.; Qu, Y. T.; Wu, Y. E.; Li, H.; Zhuang, Z. B. et al. Ultrathin palladium nanomesh for electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 3435-3438.
Fu, T.; Fang, J.; Wang, C. S.; Zhao, J. B. Hollow porous nanoparticles with Pt skin on a Ag-Pt alloy structure as a highly active electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 2016, 4, 8803-8811.
Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493-497.
Hong, W.; Bi, P. Y.; Shang, C. S.; Wang, J.; Wang, E. K. Multi-walled carbon nanotube supported Pd nanocubes with enhanced electrocatalytic activity. J. Mater. Chem. A 2016, 4, 4485-4489.
Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414-10472.
Sun, X. H.; Jiang, K. Z.; Zhang, N.; Guo, S. J.; Huang, X. Q. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 2015, 9, 7634-7640.
Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28-32.
Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.
Guo, S. J.; Zhang, S.; Sun, X. L.; Sun, S. H. Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction. J. Am. Chem. Soc. 2011, 133, 15354-15357.
Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412-416.
Yang, N. L.; Zhang, Z. C.; Chen, B.; Huang, Y.; Chen, J. Z.; Lai, Z. C.; Chen, Y.; Sindoro, M.; Wang, A. L.; Cheng, H. F. et al. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 2017, 29, 1700769.
Cho, K. Y.; Yeom, Y. S.; Seo, H. Y.; Kumar, P.; Baek, K. -Y.; Yoon, H. G. A facile synthetic route for highly durable mesoporous platinum thin film electrocatalysts based on graphene: Morphological and support effects on the oxygen reduction reaction. J. Mater. Chem. A 2017, 5, 3129-3135.
Zhao, W. Y.; Ni, B.; Yuan, Q.; He, P. L.; Gong, Y.; Gu, L.; Wang, X. Highly active and durable Pt72Ru28 porous nanoalloy assembled with sub-4.0 nm particles for methanol oxidation. Adv. Energy Mater. 2017, 7, 1601593.
Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C. P.; Liao, J. H.; Lu, T. H.; Xing, W. Recent advances in catalysts for direct methanol fuel cells. Energy Environ. Sci. 2011, 4, 2736-2753.
Fu, G. T.; Liu, H. M.; You, N. K.; Wu, J. Y.; Sun, D. M.; Xu, L.; Tang, Y. W.; Chen, Y. Dendritic platinum-copper bimetallic nanoassemblies with tunable composition and structure: Arginine-driven self-assembly and enhanced electrocatalytic activity. Nano Res. 2016, 9, 755-765.
Wang, Y.; Sheng, Z. M.; Yang, H. B.; Jiang, S. P.; Li, C. M. Electrocatalysis of carbon black- or activated carbon nanotubes-supported Pd-Ag towards methanol oxidation in alkaline media. Int. J. Hydrogen Energy 2010, 35, 10087-10093.
Fang, C. H.; Zhao, J.; Zhao, G. L.; Kuai, L.; Geng, B. Y. Simultaneous tunable structure and composition of PtAg alloyed nanocrystals as superior catalysts. Nanoscale 2016, 8, 14971-14978.
Yang, X.; Roling, L. T.; Vara, M.; Elnabawy, A. O.; Zhao, M.; Hood, Z. D.; Bao, S. X.; Mavrikakis, M.; Xia, Y. N. Synthesis and characterization of Pt-Ag alloy nanocages with enhanced activity and durability toward oxygen reduction. Nano Lett. 2016, 16, 6644-6649.
Wang, R. Y.; Higgins, D. C.; Prabhudev, S.; Lee, D. U.; Choi, J. -Y.; Hoque, M. A.; Botton, G. A.; Chen, Z. W. Synthesis and structural evolution of Pt nanotubular skeletons: Revealing the source of the instability of nanostructured electrocatalysts. J. Mater. Chem. A 2015, 3, 12663-12671.
Xu, H.; Song, P. P.; Yan, B.; Wang, C. Q.; Shiraishi, Y.; Yang, P.; Du, Y. K. Pt islands on 3D nut-like PtAg nanocrystals for efficient formic acid oxidation electrocatalysis. ChemSusChem 2018, 11, 1056-1062.
Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape- controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60-103.
Liu, X. X.; Li, L. L.; Yang, Y. D.; Yin, Y. D.; Gao, C. B. One-step growth of triangular silver nanoplates with predictable sizes on a large scale. Nanoscale 2014, 6, 4513-4516.
Xu, H.; Wang, J.; Yan, B.; Zhang, K.; Li, S. M.; Wang, C. Q.; Shiraishi, Y.; Du, Y. K.; Yang, P. Hollow AuxAg/Au core/shell nanospheres as efficient catalysts for electrooxidation of liquid fuels. Nanoscale 2017, 9, 12996-13003.
Xu, H.; Wang, J.; Yan, B.; Li, S. M.; Wang, C. Q.; Shiraishi, Y.; Yang, P.; Du, Y. K. Facile construction of fascinating trimetallic PdAuAg nanocages with exceptional ethylene glycol and glycerol oxidation activity. Nanoscale 2017, 9, 17004-17012.
Xu, H.; Yan, B.; Wang, J.; Zhang, K.; Li, S. M.; Xiong, Z. P.; Wang, C. Q.; Shiraishi, Y.; Du, Y. K.; Yang, P. Self-supported porous 2D AuCu triangular nanoprisms as model electrocatalysts for ethylene glycol and glycerol oxidation. J. Mater. Chem. A 2017, 5, 15932-15939.
Tang, Y.; Cheng, W. L. Key parameters governing metallic nanoparticle electrocatalysis. Nanoscale 2015, 7, 16151- 16164.
Fu, S. F.; Zhu, C. Z.; Du, D.; Lin, Y. H. Enhanced electrocatalytic activities of PtCuCoNi three-dimensional nanoporous quaternary alloys for oxygen reduction and methanol oxidation reactions. ACS Appl. Mater. Interfaces 2016, 8, 6110-6116.
Fu, G. T.; Ma, R. G.; Gao, X. Q.; Chen, Y.; Tang, Y. W.; Lu, T. H.; Lee, J. M. Hydrothermal synthesis of Pt-Ag alloy nano-octahedra and their enhanced electrocatalytic activity for the methanol oxidation reaction. Nanoscale 2014, 6, 12310-12314.
Hong, W.; Shang, C. S.; Wang, J.; Wang, E. K. Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ. Sci. 2015, 8, 2910-2915.
Xie, X. B.; Gao, G. H.; Kang, S. D.; Shibayama, T.; Lei, Y. H.; Gao, D. Y.; Cai, L. T. Site-selective trimetallic heterogeneous nanostructures for enhanced electrocatalytic performance. Adv. Mater. 2015, 27, 5573-5577.
Feng, Y. Y.; Bi, L. X.; Liu, Z. H.; Kong, D. S.; Yu, Z. Y. Significantly enhanced electrocatalytic activity for methanol electro-oxidation on Ag oxide-promoted PtAg/C catalysts in alkaline electrolyte. J. Catal. 2012, 290, 18-25.
Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 1999, 146, 3750-3756.
Hong, W.; Wang, J.; Wang, E. K. Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity. Nano Res. 2015, 8, 2308-2316.
Lou, Y.; Li, C. G.; Gao, X. D.; Bai, T. Y.; Chen, C. L.; Huang, H.; Liang, C.; Shi, Z.; Feng, S. H. Porous Pt nanotubes with high methanol oxidation electrocatalytic activity based on original bamboo-shaped Te nanotubes. ACS Appl. Mater. Interfaces 2016, 8, 16147-16153.
Chen, L. X.; Liu, L.; Feng, J. J.; Wang, Z. G.; Wang, A. J. Oligonucleotide-assisted successive coreduction synthesis of dendritic platinum-gold core-shell alloy nanocrystals with improved electrocatalytic performance for methanol oxidation. J. Power Sources 2016, 302, 140-145.
Shang, C. S.; Hong, W.; Wang, J.; Wang, E. K. Carbon supported trimetallic nickel-palladium-gold hollow nanoparticles with superior catalytic activity for methanol electrooxidation. J. Power Sources 2015, 285, 12-15.
Ji, Y. J.; Wu, Y. E.; Zhao, G. F.; Wang, D. S.; Liu, L.; He, W.; Li, Y. D. Porous bimetallic Pt-Fe nanocatalysts for highly efficient hydrogenation of acetone. Nano Res. 2015, 8, 2706-2713.
Bae, J. H.; Han, J. H.; Chung, T. D. Electrochemistry at nanoporous interfaces: New opportunity for electrocatalysis. Phys. Chem. Chem. Phys. 2012, 14, 448-463.
Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594-3657.
Morallón, E.; Rodes, A.; Vázquez, J. L.; Pérez, J. M. Voltammetric and in-situ FTIR spectroscopic study of the oxidation of methanol on Pt(hkl) in alkaline media. J. Electroanal. Chem. 1995, 391, 149-157.
Tripković, A. V.; Popović, K. D.; Momčilović, J. D.; Dražić, D. M. Kinetic and mechanistic study of methanol oxidation on a Pt(100) surface in alkaline media. J. Electroanal. Chem. 1998, 448, 173-181.