AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electrochemically driven phenothiazine modification of carbon nanodots

Mónica Mediavilla1Emiliano Martínez-Periñán1Iria Bravo1,2Tania García-Mendiola1,2,3Mónica Revenga-Parra1,2,3Félix Pariente1,2,3Encarnación Lorenzo1,2,3( )
Departamento de Química Analítica y Análisis InstrumentalUniversidad Autónoma de MadridMadrid28049Spain
Instituto Madrileño de Estudios Avanzados (IMDEA) NanocienciaFaraday9Campus UAMCantoblancoMadrid9Spain
Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadrid28049Spain
Show Author Information

Graphical Abstract

Abstract

Carbon nanodots (CNDs) with enriched periphery carboxylic groups were synthesized using the low-cost starting material glucose. The obtained CNDs were assembled onto Au electrodes following one of two strategies: covalent bonding, using cystamine as a cross-linker, or by drop-casting. The immobilized CNDs were covalently modified with the phenothiazine Azure A via electron transfer chemistry; in particular via reactions with aryl diazonium salts. The reaction mechanism for the diazonium functionalization of CNDs was investigated. Spectroelectrochemistry experiments confirmed that electrografting, rather than adsorption, governs the functionalization of CNDs with Azure A. Finally, the application of these CNDs as electrocatalysts for the oxidation of hydrazine was demonstrated.

Electronic Supplementary Material

Download File(s)
12274_2018_2165_MOESM1_ESM.pdf (1.2 MB)

References

1

Ren X. L.; Liu J.; Meng X. W.; Wei J. F.; Liu T. L.; Tang F. Q. Synthesis of Ultra-stable fluorescent carbon dots from polyvinylpyrrolidone and their application in the detection of hydroxyl radicals. Chem. -Asian. J. 2014, 9, 1054-1059.

2

Li, H. T.; Kang, Z. H.; Liu, Y.; Lee, S. T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230-24253.

3

Li, H. T.; He, X. D.; Liu, Y.; Huang, H.; Lian, S. Y.; Lee, S. T.; Kang, Z. H. One-step ultrasonic synthesis of water- soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 2011, 49, 605-609.

4

Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. , Int. Ed. 2010, 49, 6726-6744.

5

Esteves da Silva, J. C. G.; Gonçalves, H. M. R. Analytical and bioanalytical applications of carbon dots. TrAC, Trends Anal. Chem. 2011, 30, 1327-1336.

6

Xu, B. L.; Zhao, C. Q.; Wei, W. L.; Ren, J. S.; Miyoshi, D.; Sugimoto, N.; Qu, X. G. Aptamer carbon nanodot sandwich used for fluorescent detection of protein. Analyst 2012, 137, 5483-5486.

7

Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. , Int. Ed. 2013, 52, 3953-3957.

8

Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736-12737.

9

Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362-381.

10

Zhao, A. D.; Chen, Z. W.; Zhao, C. Q.; Gao, N.; Ren, J. S.; Qu, X. G. Recent advances in bioapplications of C-dots. Carbon 2015, 85, 309-327.

11

Arcudi, F.; Đorđević, L.; Prato, M. Synthesis, separation, and characterization of small and highly fluorescent nitrogen- doped carbon nanoDots. Angew. Chem. , Int. Ed. 2016, 55, 2107-2112.

12

Ferrer-Ruiz, A.; Scharl, T.; Haines, P.; Rodríguez-Pérez, L.; Cadranel, A.; Herranz, M. Á.; Guldi, D. M.; Martín, N. Exploring tetrathiafulvalene-carbon Nanodot conjugates in charge transfer reactions. Angew. Chem. , Int. Ed. 2018, 57, 1001-1005.

13

Pinson, J.; Podvorica, F. Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem. Soc. Rev. 2005, 34, 429-439.

14

Allongue, P.; Delamar, M.; Desbat, B.; Fagebaume, O.; Hitmi, R.; Pinson, J.; Savéant, J. M. Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. J. Am. Chem. Soc. 1997, 119, 201-207.

15

Brooksby, P. A.; Downard, A. J. Electrochemical and atomic force microscopy study of carbon surface modification via diazonium reduction in aqueous and acetonitrile solutions. Langmuir 2004, 20, 5038-5045.

16

Delamar, M.; Désarmot, G.; Fagebaume, O.; Hitmi, R.; Pinsonc, J.; Savéant, J. M. Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites. Carbon 1997, 35, 801-807.

17

Downard, A. J. Electrochemically assisted covalent modification of carbon electrodes. Electroanalysis 2000, 12, 1085-1096.

18

Downard, A. J.; Prince, M. J. Barrier properties of organic monolayers on glassy carbon electrodes. Langmuir 2001, 17, 5581-5586.

19

Kariuki, J. K.; McDermott, M. T. Nucleation and growth of functionalized aryl films on graphite electrodes. Langmuir 1999, 15, 6534-6540.

20

Ortiz, B.; Saby, C.; Champagne, G. Y.; Bélanger, D. Electrochemical modification of a carbon electrode using aromatic diazonium salts. 2. Electrochemistry of 4-nitrophenyl modified glassy carbon electrodes in aqueous media. J. Electroanal. Chem. 1998, 455, 75-81.

21

Ranganathan, S.; Steidel, I.; Anariba, F.; McCreery, R. L. Covalently bonded organic monolayers on a carbon substrate:  A new paradigm for molecular electronics. Nano Lett. 2001, 1, 491-494.

22

Saby, C.; Ortiz, B.; Champagne, G. Y.; Bélanger, D. Electrochemical modification of glassy carbon electrode using aromatic diazonium salts. 1. Blocking effect of 4-nitrophenyl and 4-carboxyphenyl groups. Langmuir 1997, 13, 6805-6813.

23

Bélanger, D.; Pinson, J. Electrografting: A powerful method for surface modification. Chem. Soc. Rev. 2011, 40, 3995-4048.

24

Xu, Y. H.; Liu, J. Q.; Zhang, J. Z.; Zong, X. D.; Jia, X. F.; Li, D.; Wang, E. K. Chip-based generation of carbon nanodots via electrochemical oxidation of screen printed carbon electrodes and the applications for efficient cell imaging and electrochemiluminescence enhancement. Nanoscale 2015, 7, 9421-9426.

25

Martínez-Periñán, E.; Bravo, I.; Rowley-Neale, S. J.; Lorenzo, E.; Banks, C. E. Carbon nanodots as electrocatalysts towards the oxygen reduction reaction. Electroanalysis 2018, 30, 436-444.

26

Shao, X. L.; Gu, H.; Wang, Z.; Chai, X. L.; Tian, Y.; Shi, G. Y. Highly selective electrochemical strategy for monitoring of cerebral Cu2+ based on a carbon dot-TPEA hybridized surface. Anal. Chem. 2013, 85, 418-425.

27

Roushani, M.; Sarabaegi, M. Novel electrochemical sensor based on carbon nanodots/chitosan nanocomposite for the detection of tryptophan. J. Iran Chem. Soc. 2015, 12, 1875-1882.

28

García-Mendiola, T.; Bravo, I.; López-Moreno, J. M.; Pariente, F.; Wannemacher, R.; Weber, K.; Popp, J.; Lorenzo, E. Carbon nanodots based biosensors for gene mutation detection. Sens. Actuators B 2018, 256, 226-233.

29

Garoz-Ruiz, J.; Heras, A.; Palmero, S.; Colina, A. Development of a novel bidimensional spectroelectrochemistry cell using transfer single-walled carbon nanotubes films as optically transparent electrodes. Anal. Chem. 2015, 87, 6233-6239.

30

Hansen, W. N.; Osteryoung, R. A.; Kuwana, T. Internal reflection spectroscopic observation of electrode-solution interface. J. Am. Chem. Soc. 1966, 88, 1062-1063.

31

Heineman, W. R. Spectroelectrochemistry. combination of optical and electrochemical techniques for studies of redox chemistry. Anal. Chem. 1978, 50, 390A-402A.

32

Peng, H.; Travas-Sejdic, J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 2009, 21, 5563-5565.

33

Horcas, I. H.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

34

Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355-381.

35

Bernard, M. C.; Chaussé, A.; Cabet-Deliry, E.; Chehimi, M. M.; Pinson, J.; Podvorica, F.; Vautrin-Ul, C. Organic layers bonded to industrial, coinage, and noble metals through electrochemical reduction of aryldiazonium salts. Chem. Mater. 2003, 15, 3450-3462.

36

Mažeikienė, R.; Niaura, G.; Eicher-Lorka, O.; Malinauskas, A. Raman spectroelectrochemical study of Toluidine Blue, adsorbed and electropolymerized at a gold electrode. Vib. Spectrosc. 2008, 47, 105-112.

37

Revenga-Parra, M.; Gómez-Anquela, C.; García-Mendiola, T.; Gonzalez, E.; Pariente, F.; Lorenzo, E. Grafted Azure A modified electrodes as disposable β-nicotinamide adenine dinucleotide sensors. Anal. Chim. Acta 2012, 747, 84-91.

38

Bishop, E. CHAPTER 8B - Oxidation-reduction indicators of high formal potential. In Indicators. Bishop, E., Ed.; Pergamon: Oxford, 1972; pp 531-684.

39

Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 1979, 101, 19-28.

Nano Research
Pages 6405-6416
Cite this article:
Mediavilla M, Martínez-Periñán E, Bravo I, et al. Electrochemically driven phenothiazine modification of carbon nanodots. Nano Research, 2018, 11(12): 6405-6416. https://doi.org/10.1007/s12274-018-2165-y

784

Views

6

Crossref

N/A

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 19 June 2018
Revised: 25 July 2018
Accepted: 30 July 2018
Published: 17 August 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return