AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanoporous magnesium

Ilya Vladimirovich Okulov1,2( )Sviatlana V. Lamaka3Takeshi Wada1Kunio Yubuta1Mikhail L. Zheludkevich3,4Jörg Weissmüller2,5Jürgen Markmann2,5Hidemi Kato1
Institute for Materials ResearchTohoku University, Katahira 2-1-1, Sendai, 980-8577Japan
Institute of Materials ResearchMaterials MechanicsHelmholtz-Zentrum Geesthacht21502Geesthacht, Germany
MagIC—Magnesium Innovation CentreHelmholtz-Zentrum Geesthacht21502Geesthacht, Germany
Faculty of EngineeringUniversity of Kiel24118Kiel, Germany
Institute of Materials Physics and TechnologyHamburg University of Technology21073Hamburg, Germany
Show Author Information

Graphical Abstract

Abstract

In this study, we present freestanding nanoporous magnesium as a novel lightweight material with high potential for structural and functional applications. Thus far, the high reactivity of Mg with oxygen and aqueous media prevented the fabrication of nanoporous Mg. First, in order to synthesize nanoporous Mg, we fabricated a bicontinuous nanocomposite consisting of interpenetrating Mg and non-Mg phases by liquid metal dealloying. The non-Mg phases in the nanocomposite protect Mg against corrosion. Second, we etched the non-Mg phases from the nanocomposite, leaving nanoporous Mg, using HF solution. This process is advantageous because the nanoporous Mg was passivated by a MgF2 layer during the etching. Our approach is very flexible, and we demonstrate that versatile microstructures of the nanoporous Mg—e.g., nanoscale bicontinuous network, hierarchical, or plate-like structures—can be designed for the given needs. More importantly, these nanoporous Mg samples can readily be exposed to air without being harmed by corrosion.

References

1

Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450-453.

2

McCue, I.; Benn, E.; Gaskey, B.; Erlebacher, J. Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 2016, 46, 263-286.

3

Weissmüller, J.; Sieradzki, K. Dealloyed nanoporous materials with interface-controlled behavior. MRS Bull. 2018, 43, 14-19.

4

Fujita, T.; Guan, P. F.; McKenna, K.; Lang, X. Y.; Hirata, A.; Zhang, L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N.; Ishikawa, Y.; Asao, N.; Yamamoto, Y.; Erlebacher, J.; Chen, M. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 2012, 11, 775-780.

5

Kramer, D.; Viswanath, R. N.; Weissmüller, J. Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Lett. 2004, 4, 793-796.

6

Chen, Q.; Ding, Y.; Chen, M. W. Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bull. 2018, 43, 43-48.

7

Li, R.; Sieradzki, K. Ductile-brittle transition in random porous Au. Phys. Rev. Lett. 1992, 68, 1168-1171.

8

Detsi, E.; Sellès, M. S.; Onck, P. R.; De Hosson, J. T. M. Nanoporous silver as electrochemical actuator. Scr. Mater. 2013, 69, 195-198.

9

Shi, S.; Markmann, J.; Weissmüller, J. Actuation by hydrogen electrosorption in hierarchical nanoporous palladium. Philos. Mag. 2017, 97, 1571-1587.

10

Cheng, C.; Lührs, L.; Krekeler, T.; Ritter, M.; Weissmüller, J. Semiordered hierarchical metallic network for fast and large charge-induced strain. Nano Lett. 2017, 17, 4774-4780.

11

Wada, T.; Kato, H. Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel. Scr. Mater. 2013, 68, 723-726.

12

Okulov, I. V.; Okulov, A. V.; Soldatov, I. V.; Luthringer, B.; Willumeit-Römer, R.; Wada, T.; Kato, H.; Weissmüller, J.; Markmann, J. Open porous dealloying-based biomaterials as a novel biomaterial platform. Mater. Sci. Eng. C 2018, 83, 95-103.

13

Tsuda, M.; Wada, T.; Kato, H. Kinetics of formation and coarsening of nanoporous α-titanium dealloyed with Mg melt. J. Appl. Phys. 2013, 114, 113503.

14

Okulov, I. V.; Okulov, A. V.; Volegov, A. S.; Markmann, J. Tuning microstructure and mechanical properties of open porous TiNb and TiFe alloys by optimization of dealloying parameters. Scr. Mater. 2018, 154, 68-72.

15

Wada, T.; Setyawan, A. D.; Yubuta, K.; Kato, H. Nano- to submicro-porous β-Ti alloy prepared from dealloying in a metallic melt. Scr. Mater. 2011, 65, 532-535.

16

Wada, T.; Yubuta, K.; Inoue, A.; Kato, H. Dealloying by metallic melt. Mater. Lett. 2011, 65, 1076-1078.

17

Jain, I. P.; Lal, C.; Jain, A. Hydrogen storage in Mg: A most promising material. Int. J. Hydrogen Energy 2010, 35, 5133-5144.

18

Mohtadi, R.; Mizuno, F. Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 2014, 5, 1291-1311.

19

Cheng, M. Q.; Wahafu, T.; Jiang, G. F.; Liu, W.; Qiao, Y. Q.; Peng, X. C.; Cheng, T.; Zhang, X. L.; He, G.; Liu, X. Y. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Sci. Rep. 2016, 6, 24134.

20

Volkert, C. A.; Lilleodden, E. T.; Kramer, D.; Weissmüller, J. Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 2006, 89, 061920.

21

Biener, J.; Hodge, A. M.; Hayes, J. R.; Volkert, C. A.; Zepeda-Ruiz, L. A.; Hamza, A. V.; Abraham, F. F. Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 2006, 6, 2379-2382.

22

Zhang, T. R.; Tao, Z. L.; Chen, J. Magnesium-air batteries: From principle to application. Mater. Horiz. 2014, 1, 196-206.

23

Kucharczyk, A.; Naplocha, K.; Kaczmar, J. W.; Dieringa, H.; Kainer, K. U. Current status and recent developments in porous magnesium fabrication. Adv. Eng. Mater. 2018, 20, 1700562.

24

McCue, I.; Gaskey, B.; Geslin, P. A.; Karma, A.; Erlebacher, J. Kinetics and morphological evolution of liquid metal dealloying. Acta Mater. 2016, 115, 10-23.

25

Geslin, P. A.; Mccue, I.; Gaskey, B.; Erlebacher, J.; Karma, A. Topology-generating interfacial pattern formation during liquid metal dealloying. Nat. Commun. 2015, 6, 8887.

26

Chiu, K. Y.; Wong, M. H.; Cheng, F. T.; Man, H. C. Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants. Surf. Coat. Technol. 2007, 202, 590-598.

27

Okulov, I. V.; Bönisch, M.; Kühn, U.; Skrotzki, W.; Eckert, J. Significant tensile ductility and toughness in an ultrafine- structured Ti68.8Nb13.6Co6Cu5.1Al6.5 bi-modal alloy. Mater. Sci. Eng. A 2014, 615, 457-463.

28

Okulov, I. V.; Pauly, S.; Kühn, U.; Gargarella, P.; Marr, T.; Freudenberger, J.; Schultz, L.; Scharnweber, J.; Oertel, C. G.; Skrotzki, W.; Eckert, J. Effect of microstructure on the mechanical properties of as-cast Ti-Nb-Al-Cu-Ni alloys for biomedical application. Mater. Sci. Eng. C 2013, 33, 4795-4801.

29

Okulov, I. V.; Bönisch, M.; Okulov, A. V.; Volegov, A. S.; Attar, H.; Ehtemam-Haghighi, S.; Calin, M.; Wang, Z.; Hohenwarter, A.; Kaban, I.; Prashanth, K. G.; Eckert, J. Phase formation, microstructure and deformation behavior of heavily alloyed TiNb- and TiV-based titanium alloys. Mater. Sci. Eng. A 2018, 733, 80-86.

30

Suryanarayana, C.; Inoue, A. Bulk metallic glasses; CRC Press: Boca Raton, FL, 2011.

31

Leyens, C.; Peters, M. Titanium and Titanium Alloys; Wiley-VCH Verlag: Weinheim, 2003.

32

Okulov, I. V.; Wendrock, H.; Volegov, A. S.; Attar, H.; Kühn, U.; Skrotzki, W.; Eckert, J. High strength beta titanium alloys: New design approach. Mater. Sci. Eng. A 2015, 628, 297-302.

33

Okulov, I. V.; Bönisch, M.; Volegov, A. S.; Shahabi, H. S.; Wendrock, H.; Gemming, T.; Eckert, J. Micro-to-nano-scale deformation mechanism of a Ti-based dendritic-ultrafine eutectic alloy exhibiting large tensile ductility. Mater. Sci. Eng. A 2017, 682, 673-678.

34

Okulov, I. V.; Sarmanova, M. F.; Volegov, A. S.; Okulov, A.; Kühn, U.; Skrotzki, W.; Eckert, J. Effect of boron on microstructure and mechanical properties of multicomponent titanium alloys. Mater. Lett. 2015, 158, 111-114.

35

Baker, H. ASM Handbook: Alloy Phase Diagrams; ASM International: Materials Park, 1992.

36

Vander Voort, G. F. ASM Handbook: Metallography and Microstructures; ASM International: Materials Park, 2004.

37

Okulov, A. V.; Volegov, A. S.; Weissmüller, J.; Markmann, J.; Okulov, I. V. Dealloying-based metal-polymer composites for biomedical applications. Scr. Mater. 2018, 146, 290-294.

38

Chen, Q.; Sieradzki, K. Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nat. Mater. 2013, 12, 1102-1106.

39

Muldoon, J.; Bucur, C. B.; Oliver, A. G.; Sugimoto, T.; Matsui, M.; Kim, H. S.; Allred, G. D.; Zajicek, J.; Kotani, Y. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 2012, 5, 5941-5950.

40

Okulov, I. V.; Weissmüller, J.; Markmann, J. Dealloying-based interpenetrating-phase nanocomposites matching the elastic behavior of human bone. Sci. Rep. 2017, 7, 20.

Nano Research
Pages 6428-6435
Cite this article:
Okulov IV, Lamaka SV, Wada T, et al. Nanoporous magnesium. Nano Research, 2018, 11(12): 6428-6435. https://doi.org/10.1007/s12274-018-2167-9

675

Views

46

Crossref

N/A

Web of Science

46

Scopus

0

CSCD

Altmetrics

Received: 06 June 2018
Revised: 13 July 2018
Accepted: 02 August 2018
Published: 24 August 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return