AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Current taxane formulations and emerging cabazitaxel delivery systems

Boyang Sun1,2Robert M. Straubinger3Jonathan F. Lovell1,2( )
Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260USA
Department of Chemical and Biological EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260USA
Department of Pharmaceutical SciencesUniversity at BuffaloState University of New YorkBuffaloNY14214USA
Show Author Information

Graphical Abstract

Abstract

Cabazitaxel is a second-generation taxane with promising anti-tumor activity and is approved for treating hormone-refractory metastatic prostate cancer previously treated with docetaxel. Although first-generation taxanes (i.e. paclitaxel and docetaxel) have sparked broad interest in a variety of drug delivery vehicles, fewer have yet been developed for cabazitaxel. This review summarizes several clinical-stage approaches for taxane formulation and recent efforts to develop novel cabazitaxel delivery systems.

References

1

Crown, J.; O'Leary, M. The taxanes: An update. Lancet 2000, 355, 1176–1178.

2

Yared, J. A.; Tkaczuk, K. H. R. Update on taxane development: New analogs and new formulations. Drug Des. Devel. Ther. 2012, 6, 371–384.

3

Zhao, P. X.; Astruc, D. Docetaxel nanotechnology in anticancer therapy. ChemMedChem 2012, 7, 952–972.

4

Zhang, Z. P.; Mei, L.; Feng, S. S. Paclitaxel drug delivery systems. Expert Opin. Drug Deliv. 2013, 10, 325–340.

5

Paller, C. J.; Antonarakis, E. S. Cabazitaxel: A novel second-line treatment for metastatic castration-resistant prostate cancer. Drug Des. Devel. Ther. 2011, 5, 117–124.

6

Kartner, N.; Riordan, J. R.; Ling, V. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science 1983, 221, 1285–1288.

7

Vrignaud, P.; Sémiond, D.; Lejeune, P.; Bouchard, H.; Calvet, L.; Combeau, C.; Riou, J. F.; Commerçon, A.; Lavelle, F.; Bissery, M. C. Preclinical antitumor activity of cabazitaxel, a semisynthetic taxane active in taxane-resistant tumors. Clin. Cancer Res. 2013, 19, 2973–2983.

8

De Bono, J. S.; Oudard, S.; Ozguroglu, M.; Hansen, S.; Machiels, J. P.; Kocak, I.; Gravis, G.; Bodrogi, I.; Mackenzie, M. J.; Shen, L. J. et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet 2010, 376, 1147–1154.

9

Cragg, G. M. Paclitaxel (Taxol®): A success story with valuable lessons for natural product drug discovery and development. Med. Res. Rev. 1998, 18, 315–331.

10

Cragg, G. M.; Newman, D. J. A tale of two tumor targets: Topoisomerase I and tubulin. The Wall and Wani contribution to cancer chemotherapy. J. Nat. Prod. 2004, 67, 232–244.

11

Rowinsky, E. Paclitaxel pharmacology and other tumor types. Semin. Oncol. 1998, 24, S19-1–S19-12.

12

Rowinsky, M.; Eric, K. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu. Rev. Med. 1997, 48, 353–374.

13

Schiff, P. B.; Fant, J.; Horwitz, S. B. Promotion of microtubule assembly in vitro by taxol. Nature 1979, 277, 665–667.

14

MacConnachie, A. Docetaxel (Taxotere, Rhone-Poulenc Rorer). Intensive Crit. Care Nurs. 1997, 13, 119–120.

15

Guenard, D.; Gueritte-Voegelein, F.; Potier, P. Taxol and taxotere: Discovery, chemistry, and structure-activity relationships. Acc. Chem. Res. 1993, 26, 160–167.

16

Diaz, J. F.; Andreu, J. M. Assembly of purified GDP-tubulin into microtubules induced by taxol and taxotere: Reversibility, ligand stoichiometry, and competition. Biochemistry 1993, 32, 2747–2755.

17

Yusuf, R. Z.; Duan, Z.; Lamendola, D. E.; Penson, R. T.; Seiden, M. V. Paclitaxel resistance: Molecular mechanisms and pharmacologic manipulation. Curr. Cancer Drug Targets 2003, 3, 1–19.

18

Jones, S. E.; Erban, J.; Overmoyer, B.; Budd, G. T.; Hutchins, L.; Lower, E.; Laufman, L.; Sundaram, S.; Urba, W. J.; Pritchard, K. I. et al. Randomized phase Ⅲ study of docetaxel compared with paclitaxel in metastatic breast cancer. J. Clin. Oncol. 2005, 23, 5542–5551.

19

Lee, K. S.; Chung, H. C.; Im, S. A.; Park, Y. H.; Kim, C. S.; Kim, S. B.; Rha, S. Y.; Lee, M. Y.; Ro, J. Multicenter phase Ⅱ trial of Genexol-PM, a cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat. 2008, 108, 241–250.

20

Untch, M.; Untch, A.; Sevin, B. U.; Angioli, R.; Perras, J. P.; Koechli, O.; Averette, H. E. Comparison of paclitaxel and docetaxel (Taxotere) in gynecologic and breast cancer cell lines with the ATP-cell viability assay. Anti-Cancer Drugs 1994, 5, 24–30.

21

Valero, V.; Jones, S. E.; Von Hoff, D. D.; Booser, D. J.; Mennel, R. G.; Ravdin, P. M.; Holmes, F. A.; Rahman, Z.; Schottstaedt, M. W.; Erban, J. K. et al. A phase Ⅱ study of docetaxel in patients with paclitaxel-resistant metastatic breast cancer. J. Clin. Oncol. 1998, 16, 3362–3368.

22

Verschraegen, C. F.; Sittisomwong, T.; Kudelka, A. P.; de Paula Guedes, E.; Steger, M.; Nelson-Taylor, T.; Vincent, M.; Rogers, R.; Atkinson, E. N.; Kavanagh, J. J. Docetaxel for patients with paclitaxel-resistant Mullerian carcinoma. J. Clin. Oncol. 2000, 18, 2733–2739.

23

Horwitz, S. B.; Cohen, D.; Rao, S.; Ringel, I.; Shen, H. J.; Yang, C. P. Taxol: Mechanisms of action and resistance. J. Natl. Cancer Inst. Monogr. 1993, 55–61.

24

Lockhart, A. C.; Tirona, R. G.; Kim, R. B. Pharmacogenetics of ATP-binding cassette transporters in cancer and chemotherapy. Mol. Cancer Ther. 2003, 2, 685–698.

25

Childs, S.; Yeh, R. L.; Hui, D.; Ling, V. Taxol resistance mediated by transfection of the liver-specific sister gene of P-glycoprotein. Cancer Res. 1998, 58, 4160–4167.

26

Hopper-Borge, E.; Chen, Z. S.; Shchaveleva, I.; Belinsky, M. G.; Kruh, G. D. Analysis of the drug resistance profile of multidrug resistance protein 7 (ABCC10): Resistance to docetaxel. Cancer Res. 2004, 64, 4927–4930.

27

Bradshaw, D. M.; Arceci, R. J. Clinical relevance of transmembrane drug efflux as a mechanism of multidrug resistance. J. Clin. Oncol. 1998, 16, 3674–3690.

28

Fojo, T.; Menefee, M. Mechanisms of multidrug resistance: The potential role of microtubule-stabilizing agents. Ann. Oncol. 2007, 18, v3–v8.

29

Perez, E. A. Microtubule inhibitors: Differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol. Cancer Ther. 2009, 8, 2086– 2095.

30

Vrignaud, P.; Semiond, D.; Benning, V.; Beys, E.; Bouchard, H.; Gupta, S. Preclinical profile of cabazitaxel. Drug Des. Devel. Ther. 2014, 8, 1851–1867.

31

Bouchard, H.; Semiond, D.; Risse, M. L.; Vrignaud, P. Novel taxanes: Cabazitaxel case study. In Analogue-Based Drug Discovery Ⅲ; Fischer, J.; Ganellin, C. R.; Rotella, D. P., Eds.; Wiley-VCH: Weinheim, Germany, 2012; pp 319–341.

32

Paller, C. J.; Antonarakis, E. S. Cabazitaxel: A novel second-line treatment for metastatic castration-resistant prostate cancer. Drug Des. Devel. Ther. 2011, 5, 117–124.

33

Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 2016, 66, 7–30.

34

De Bono, J. S.; Scher, H. I.; Montgomery, R. B.; Parker, C.; Miller, M. C.; Tissing, H.; Doyle, G. V.; Terstappen, L. W. W. M.; Pienta, K. J.; Raghavan, D. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 2008, 14, 6302–6309.

35

Semenas, J.; Allegrucci, C.; A Boorjian, S. A.; Mongan, N. P.; Liao Persson, J. Overcoming drug resistance and treating advanced prostate cancer. Curr. Drug Targets 2012, 13, 1308–1323.

36

Pean, E.; Demolis, P.; Moreau, A.; Hemmings, R. J.; O'Connor, D.; Brown, D.; Shepard, T.; Abadie, E.; Pignatti, F. The European medicines agency review of cabazitaxel (Jevtana®) for the treatment of hormone-refractory metastatic prostate cancer: Summary of the scientific assessment of the committee for medicinal products for human use. Oncologist 2012, 17, 543–549.

37

Galsky, M. D.; Dritselis, A.; Kirkpatrick, P.; Oh, W. K. Cabazitaxel. Nat. Rev. Drug Discov. 2010, 9, 677–678.

38

Mahajan, M.; Kaur Khurana, R.; Shri Sahajpal, N.; Utreja, P.; Sankar, R.; Singh, B.; Kumar Jain, S. Emerging strategies and challenges for controlled delivery of taxanes: A comprehensive review. Curr. Drug Metab. 2015, 16, 453–473.

39

Swain, S. M.; Arezzo, J. C. Neuropathy associated with microtubule inhibitors: Diagnosis, incidence, and management. Clin. Adv. Hematol. Oncol. 2008, 6, 455–467.

40

Krebs, A.; Goldie, K. N.; Hoenger, A. Structural rearrangements in tubulin following microtubule formation. EMBO Rep. 2005, 6, 227–232.

41

Downing, K. H.; Nogales, E. Crystallographic structure of tubulin: Implications for dynamics and drug binding. Cell Struct. Funct. 1999, 24, 269–275.

42

Abal, M.; Andreu, J.; Barasoain, I. Taxanes: Microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr. Cancer Drug Targets 2003, 3, 193–203.

43

Dı́az, J. F.; Valpuesta, J. M.; Chacón, P.; Diakun, G.; Andreu, J. M. Changes in microtubule protofilament number induced by taxol binding to an easily accessible site: Internal microtubule dynamics. J. Biol. Chem. 1998, 273, 33803–33810.

44

Montero, A.; Fossella, F.; Hortobagyi, G.; Valero, V. Docetaxel for treatment of solid tumours: A systematic review of clinical data. Lancet Oncol. 2005, 6, 229–239.

45

Balasubramanian, S. V.; Alderfer, J. L.; Straubinger, R. M. Solvent- and concentration-dependent molecular interactions of taxol (paclitaxel). J. Pharm. Sci. 1994, 83, 1470–1476.

46

Balasubramanian, S. V.; Straubinger, R. M. Taxol-lipid interactions: Taxol-dependent effects on the physical properties of model membranes. Biochemistry 1994, 33, 8941–8947.

47

Sharma, A.; Straubinger, R. M. Novel taxol formulations: Preparation and characterization of taxol-containing liposomes. Pharm. Res. 1994, 11, 889–896.

48

Campbell, R. B.; Balasubramanian, S. V.; Straubinger, R. M. Influence of cationic lipids on the stability and membrane properties of paclitaxel-containing liposomes. J. Pharm. Sci. 2001, 90, 1091–1105.

49

Mu, L.; Feng, S. S. Fabrication, characterization and in vitro release of paclitaxel (Taxol®) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J. Control. Release 2001, 76, 239–254.

50

Lee, I. H.; Park, Y. T.; Roh, K.; Chung, H.; Kwon, I. C.; Jeong, S. Y. Stable paclitaxel formulations in oily contrast medium. J. Control. Release 2005, 102, 415–425.

51

Straubinger, R. M.; Sharma, A.; Murray, M.; Mayhew, E. Novel taxol formulations: Taxol-containing liposomes. J. Natl. Cancer Inst. Monogr. 1993, 69–78.

52

Marupudi, N. I.; Han, J. E.; Li, K. W.; Renard, V. M.; Tyler, B. M.; Brem, H. Paclitaxel: A review of adverse toxicities and novel delivery strategies. Expert Opin. Drug Saf. 2007, 6, 609–621.

53

Engels, F. K.; Mathot, R. A. A.; Verweij, J. Alternative drug formulations of docetaxel: A review. Anti-Cancer Drugs 2007, 18, 95–103.

54

Nightingale, G.; Ryu, J. Cabazitaxel (jevtana): A novel agent for metastatic castration-resistant prostate cancer. P. T. 2012, 37, 440–448.

55

Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 2001, 37, 1590–1598.

56

Sofias, A. M.; Dunne, M.; Storm, G.; Allen, C. The battle of "nano" paclitaxel. Adv. Drug Deliv. Rev. 2017, 122, 20–30.

57

Carretta, R. M.; Eisenhauer, E.; Rozencweig, M. Methods for administration of taxol. U.S. Patents 5, 641, 803 A, June 24, 1997.

58

Gradishar, W. J.; Tjulandin, S.; Davidson, N.; Shaw, H.; Desai, N.; Bhar, P.; Hawkins, M.; O'Shaughnessy, J. Phase Ⅲ trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 2005, 23, 7794–7803.

59

Tamura, T.; Sasaki, Y.; Nishiwaki, Y.; Saijo, N. Phase Ⅰ study of paclitaxel by three-hour infusion: Hypotension just after infusion is one of the major dose-limiting toxicities. Jpn. J. Cancer Res. 1995, 86, 1203–1209.

60

Gotardo, M. A.; Monteiro, M. Migration of diethylhexyl phthalate from PVC bags into intravenous cyclosporine solutions. J. Pharm. Biomed. Anal. 2005, 38, 709–713.

61

Venkataramanan, R.; Burckart, G. J.; Ptachcinski, R. J.; Blaha, R.; Logue, L. W.; Bahnson, A.; Giam, C. S.; Brady, J. E. Leaching of diethylhexyl phthalate from polyvinyl chloride bags into intravenous cyclosporine solution. Am. J. Hosp. Pharm. 1986, 43, 2800–2802.

62

van Tellingen, O.; Beijnen, J. H.; Verweij, J.; Scherrenburg, E. J.; Nooijen, W. J.; Sparreboom, A. Rapid esterase-sensitive breakdown of polysorbate 80 and its impact on the plasma pharmacokinetics of docetaxel and metabolites in mice. Clin. Cancer Res. 1999, 5, 2918–2924.

63

Sparreboom, A.; Verweij, J.; Van der Burg, M. E.; Loos, W. J.; Brouwer, E.; Viganò, L.; Locatelli, A.; de Vos, A. I.; Nooter, K.; Stoter, G. et al. Disposition of Cremophor EL in humans limits the potential for modulation of the multidrug resistance phenotype in vivo. Clin. Cancer. Res. 1998, 4, 1937–1942.

64

Nannan Panday, V. R.; Huizing, M. T.; van Tellingen, O.; Hakvoort, R. A.; Willemse, P. H. B.; de Graeff, A.; Vermorken, J. B.; Beijnen, J. H. Pharmacologic study of Cremophor EL in cancer patients with impaired hepatic function receiving paclitaxel. J. Oncol. Pharm. Pract. 1999, 5, 83–86.

65

Gelderblom, H.; Verweij, J.; Brouwer, E.; Pillay, M.; de Bruijn, P.; Nooter, K.; Stoter, G.; Sparreboom, A. Disposition of[G-3H] paclitaxel and Cremophor EL in a patient with severely impaired renal function. Drug Metab. Dispos. 1999, 27, 1300–1305.

66

Szebeni, J.; Alving, C. R.; Muggia, F. M. Complement activation by Cremophor EL as a possible contributor to hypersensitivity to paclitaxel: An in vitro study. J. Natl. Cancer Inst. 1998, 90, 300–306.

67

Dye, D.; Watkins, J. Suspected anaphylactic reaction to Cremophor EL. Br. Med. J. 1980, 280, 1353.

68

Weiss, R. B.; Donehower, R. C.; Wiernik, P. H.; Ohnuma, T.; Gralla, R. J.; Trump, D. L.; Baker, J. R., Jr.; Van Echo, D. A.; Von Hoff, D. D.; Leyland-Jones, B. Hypersensitivity reactions from taxol. J. Clin. Oncol. 1990, 8, 1263–1268.

69

Szebeni, J. Complement activation-related pseudoallergy: A new class of drug-induced acute immune toxicity. Toxicology 2005, 216, 106–121.

70

van Zuylen, L.; Gianni, L.; Verweij, J.; Mross, K.; Brouwer, E.; Loos, W. J.; Sparreboom, A. Inter-relationships of paclitaxel disposition, infusion duration and Cremophor EL kinetics in cancer patients. Anti-Cancer Drugs 2000, 11, 331–337.

71

van Zuylen, L.; Verweij, J.; Sparreboom, A. Role of formulation vehicles in taxane pharmacology. Invest. New Drugs 2001, 19, 125–141.

72

Sparreboom, A.; van Zuylen, L.; Brouwer, E.; Loos, W. J.; de Bruijn, P.; Gelderblom, H.; Pillay, M.; Nooter, K.; Stoter, G.; Verweij, J. Cremophor EL-mediated alteration of paclitaxel distribution in human blood. Cancer Res. 1999, 59, 1454–1457.

73

Kongshaug, M.; Cheng, L. S.; Moan, J.; Rimington, C. Interaction of Cremophor EL with human plasma. Int. J. Biochem. 1991, 23, 473–478.

74

Sykes, E.; Woodburn, K.; Decker, D.; Kessel, D. Effects of Cremophor EL on distribution of Taxol to serum lipoproteins. Br. J. Cancer 1994, 70, 401–404.

75

Expósito, O.; Bonfill, M.; Moyano, E.; Onrubia, M.; Mirjalili, M. H.; Cusido, R. M.; Palazon, J. Biotechnological production of taxol and related taxoids: Current state and prospects. Anti-Cancer Agents Med. Chem. 2009, 9, 109–121.

76

Vasey, P. A.; Jayson, G. C.; Gordon, A.; Gabra, H.; Coleman, R.; Atkinson, R.; Parkin, D.; Paul, J.; Hay, A.; Kaye, S. B. Phase Ⅲ randomized trial of docetaxel–carboplatin versus paclitaxel–carboplatin as first-line chemotherapy for ovarian carcinoma. J. Natl. Cancer Inst. 2004, 96, 1682–1691.

77

Fossella, F. V.; DeVore, R.; Kerr, R. N.; Crawford, J.; Natale, R. R.; Dunphy, F.; Kalman, L.; Miller, V.; Lee, J. S.; Moore, M. et al. Randomized phase Ⅲ trial of docetaxel versus vinorelbine or ifosfamide in patients with advanced non-small-cell lung cancer previously treated with platinum-containing chemotherapy regimens. J. Clin. Oncol. 2000, 18, 2354–2362.

78

Webster, L. K.; Linsenmeyer, M. E.; Rischin, D.; Urch, M. E.; Woodcock, D. M.; Millward, M. J. Plasma concentrations of polysorbate 80 measured in patients following administration of docetaxel or etoposide. Cancer Chemother. Pharmacol. 1997, 39, 557–560.

79

Eisenhauer, E. A.; Trudeau, M. An overview of phase Ⅱ studies of docetaxel in patients with metastatic breast cancer. Eur. J. Cancer 1995, 31, S11–S13.

80

Green, M. R.; Manikhas, G. M.; Orlov, S.; Afanasyev, B.; Makhson, A. M.; Bhar, P.; Hawkins, M. J. Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann. Oncol. 2006, 17, 1263–1268.

81

Desai, N.; Trieu, V.; Damascelli, B.; Soon-Shiong, P. SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients. Transl. Oncol. 2009, 2, 59–64.

82

Gradishar, W. J.; Krasnojon, D.; Cheporov, S.; Makhson, A. N.; Manikhas, G. M.; Clawson, A.; Bhar, P. Significantly longer progression-free survival with nab-paclitaxel compared with docetaxel as first-line therapy for metastatic breast cancer. J. Clin. Oncol. 2009, 27, 3611–3619.

83

Garlick, R. L.; Mazer, J. S. The principal site of nonenzymatic glycosylation of human serum albumin in vivo. J. Biol. Chem. 1983, 258, 6142–6146.

84

Ait-Oudhia, S.; Straubinger, R. M.; Mager, D. E. Meta-analysis of nanoparticulate paclitaxel delivery system pharmacokinetics and model prediction of associated neutropenia. Pharm. Res. 2012, 29, 2833–2844.

85

Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46, 6387–6392.

86

Hawkins, M. J.; Soon-Shiong, P.; Desai, N. Protein nanoparticles as drug carriers in clinical medicine. Adv. Drug Deliv. Rev. 2008, 60, 876–885.

87

Sage, H.; Johnson, C.; Bornstein, P. Characterization of a novel serum albumin-binding glycoprotein secreted by endothelial cells in culture. J. Biol. Chem. 1984, 259, 3993–4007.

88

Porter, P. L.; Sage, E. H.; Lane, T. F.; Funk, S. E.; Gown, A. M. Distribution of SPARC in normal and neoplastic human tissue. J. Histochem. Cytochem. 1995, 43, 791–800.

89

Neesse, A.; Frese, K. K.; Chan, D. S.; Bapiro, T. E.; Howat, W. J.; Richards, F. M.; Ellenrieder, V.; Jodrell, D. I.; Tuveson, D. A. SPARC independent drug delivery and antitumour effects of nab-paclitaxel in genetically engineered mice. Gut 2014, 63, 974–983.

90

Li, R.; Zheng, K.; Yuan, C.; Chen, Z.; Huang, M. D. Be active or not: The relative contribution of active and passive tumor targeting of nanomaterials. Nanotheranostics 2017, 1, 346–357.

91

Kim, T. Y.; Kim, D. W.; Chung, J. Y.; Shin, S. G.; Kim, S. C.; Heo, D. S.; Kim, N. K.; Bang, Y. J. Phase Ⅰ and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer. Res. 2004, 10, 3708–3716.

92

Kim, D. W.; Kim, S. Y.; Kim, H. K.; Kim, S. W.; Shin, S. W.; Kim, J. S.; Park, K.; Lee, M. Y.; Heo, D. S. Multicenter phase Ⅱ trial of Genexol-PM, a novel cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann. Oncol. 2007, 18, 2009–2014.

93

Ventola, C. L. Progress in nanomedicine: Approved and investigational nanodrugs. P. T. 2017, 42, 742–755.

94

Kato, K.; Chin, K.; Yoshikawa, T.; Yamaguchi, K.; Tsuji, Y.; Esaki, T.; Sakai, K.; Kimura, M.; Hamaguchi, T.; Shimada, Y. et al. Phase Ⅱ study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest. New Drugs 2012, 30, 1621–1627.

95

Hamaguchi, T.; Kato, K.; Yasui, H.; Morizane, C.; Ikeda, M.; Ueno, H.; Muro, K.; Yamada, Y.; Okusaka, T.; Shirao, K. et al. A phase Ⅰ and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br. J. Cancer 2007, 97, 170–176.

96

van der Meel, R.; Lammers, T.; Hennink, W. E. Cancer nanomedicines: Oversold or underappreciated? Expert Opin. Drug Deliv. 2017, 14, 1–5.

97

Jain, M. M.; Gupte, S. U.; Patil, S. G.; Pathak, A. B.; Deshmukh, C. D.; Bhatt, N.; Haritha, C.; Babu, K. G.; Bondarde, S. A.; Digumarti, R. et al. Paclitaxel injection concentrate for nanodispersion versus nab-paclitaxel in women with metastatic breast cancer: A multicenter, randomized, comparative phase Ⅱ/Ⅲ study. Breast Cancer Res. Treat. 2016, 156, 125–134.

98

Stylianopoulos, T.; Jain, R. K. Design considerations for nanotherapeutics in oncology. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1893–1907.

99

Pattni, B. S.; Chupin, V. V.; Torchilin, V. P. New developments in liposomal drug delivery. Chem. Rev. 2015, 115, 10938–10966.

100

Koudelka, Š.; Turánek, J. Liposomal paclitaxel formulations. J. Control. Release 2012, 163, 322–334.

101

Zhang, Q.; Huang, X. E.; Gao, L. L. A clinical study on the premedication of paclitaxel liposome in the treatment of solid tumors. Biomed. Pharmacother. 2009, 63, 603–607.

102

Ye, L.; He, J.; Hu, Z. P.; Dong, Q. J.; Wang, H. B.; Fu, F. H.; Tian, J. W. Antitumor effect and toxicity of Lipusu in rat ovarian cancer xenografts. Food Chem. Toxicol. 2013, 52, 200–206.

103

ClinicalTrials. gov. Pharmacokinetics Study of Liposomal Paclitaxel in Humans (LPSPK-H)[Online]. https://www.clinicaltrials.gov/ct2/show/NCT00606515 (accessed Mar 23, 2018).

104

Wang, X. H.; Zhou, J. C.; Wang, Y. S.; Zhu, Z. Y.; Lu, Y.; Wei, Y. Q.; Chen, L. J. A phase Ⅰ clinical and pharmacokinetic study of paclitaxel liposome infused in non-small cell lung cancer patients with malignant pleural effusions. Eur. J. Cancer 2010, 46, 1474–1480.

105

Fan, Y. C.; Zhang, Q. Development of liposomal formulations: From concept to clinical investigations. Asian J. Pharm. Sci. 2013, 8, 81–87.

106

Zhang, J. A.; Anyarambhatla, G.; Ma, L.; Ugwu, S.; Xuan, T.; Sardone, T.; Ahmad, I. Development and characterization of a novel Cremophor® EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur. J. Pharm. Biopharm. 2005, 59, 177–187.

107

Fetterly, G. J.; Grasela, T. H.; Sherman, J. W.; Dul, J. L.; Grahn, A.; Lecomte, D.; Fiedler-Kelly, J.; Damjanov, N.; Fishman, M.; Kane, M. P. et al. Pharmacokinetic/ pharmacodynamic modeling and simulation of neutropenia during phase Ⅰ development of liposome-entrapped paclitaxel. Clin. Cancer Res. 2008, 14, 5856–5863.

108

Slingerland, M.; Guchelaar, H. J.; Rosing, H.; Scheulen, M. E.; van Warmerdam, L. J. C.; Beijnen, J. H.; Gelderblom, H. Bioequivalence of liposome-entrapped paclitaxel easy-to-use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: A randomized, two-period crossover study in patients with advanced cancer. Clin. Ther. 2013, 35, 1946–1954.

109

Fasol, U.; Frost, A.; Büchert, M.; Arends, J.; Fiedler, U.; Scharr, D.; Scheuenpflug, J.; Mross, K. Vascular and pharmacokinetic effects of EndoTAG-1 in patients with advanced cancer and liver metastasis. Ann. Oncol. 2012, 23, 1030–1036.

110

Eichhorn, M. E.; Ischenko, I.; Luedemann, S.; Strieth, S.; Papyan, A.; Werner, A.; Bohnenkamp, H.; Guenzi, E.; Preissler, G.; Michaelis, U. et al. Vascular targeting by EndoTAGTM-1 enhances therapeutic efficacy of conventional chemotherapy in lung and pancreatic cancer. Int. J. Cancer 2010, 126, 1235–1245.

111

Bode, C.; Trojan, L.; Weiss, C.; Kraenzlin, B.; Michaelis, U.; Teifel, M.; Alken, P.; Michel, M. S. Paclitaxel encapsulated in cationic liposomes: A new option for neovascular targeting for the treatment of prostate cancer. Oncol. Rep. 2009, 22, 321–326.

112

Thurston, G.; McLean, J. W.; Rizen, M.; Baluk, P.; Haskell, A.; Murphy, T. J.; Hanahan, D.; McDonald, D. M. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J. Clin. Invest. 1998, 101, 1401–1413.

113

Luo, D. D.; Geng, J. M.; Li, N. S.; Carter, K. A.; Shao, S.; Atilla-Gokcumen, G. E.; Lovell, J. F. Vessel-targeted chemophototherapy with cationic porphyrin-phospholipid liposomes. Mol. Cancer Ther. 2017, 16, 2452–2461.

114

Löhr, J. M.; Haas, S. L.; Bechstein, W. O.; Bodoky, G.; Cwiertka, K.; Fischbach, W.; Fölsch, U. R.; Jäger, D.; Osinsky, D.; Prausova, J. et al. Cationic liposomal paclitaxel plus gemcitabine or gemcitabine alone in patients with advanced pancreatic cancer: A randomized controlled phase Ⅱ trial. Ann. Oncol. 2012, 23, 1214–1222.

115

Lee, I. H.; Hong, J. W.; Jang, Y.; Park, Y. T.; Chung, H. Development, optimization and absorption mechanism of DHP107, oral paclitaxel formulation for single-agent anticancer therapy. In New Advances in the Basic and Clinical Gastroenterology; Brzozowski, T., Ed.; INTECH Open Access Publisher, 2012; pp 357–374.

116

Hong, J. W.; Lee, I. H.; Kwak, Y. H.; Park, Y. T.; Sung, H. C.; Kwon, I. C.; Chung, H. Efficacy and tissue distribution of DHP107, an oral paclitaxel formulation. Mol. Cancer Ther. 2007, 6, 3239–3247.

117

Hong, Y. S.; Kim, K. P.; Lim, H. S.; Bae, K. S.; Ryu, M. H.; Lee, J. L.; Chang, H. M.; Kang, Y. K.; Kim, H.; Kim, T. W. A phase Ⅰ study of DHP107, a mucoadhesive lipid form of oral paclitaxel, in patients with advanced solid tumors: Crossover comparisons with intravenous paclitaxel. Invest. New Drugs 2013, 31, 616–622.

118

Kang, Y. K.; Ryu, M. H.; Park, S. H.; Park, S. R.; Kim, J. G.; Kim, J. W.; Cho, S. H.; Park, Y. I.; Rha, S. Y.; Kang, M. J. Efficacy and safety findings from DREAM: A phase Ⅲ study of DHP107 (oral paclitaxel) vs IV paclitaxel in patients with gastric cancer after failure of first-line chemotherapy. Am. Soc. Clin. Oncol. 2016, 34, 4016.

119

Sparreboom, A.; Van Asperen, J.; Mayer, U.; Schinkel, A. H.; Smit, J. W.; Meijer, D. K.; Borst, P.; Nooijen, W. J.; Beijnen, J. H.; Van Tellingen, O. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc. Natl. Acad. Sci. USA 1997, 94, 2031–2035.

120

Paek, I. B.; Ji, H. Y.; Lee, G. S.; Lee, H. S. Simultaneous determination of paclitaxel and a new P-glycoprotein inhibitor HM-30181 in rat plasma by liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2006, 29, 628–634.

121

Lee, K. W.; Lee, K. H.; Zang, D. Y.; Park, Y. I.; Shin, D. B.; Kim, J. W.; Im, S. A.; Koh, S. A.; Yu, K. S.; Cho, J. Y. et al. Phase Ⅰ/Ⅱ study of weekly oraxol for the second-line treatment of patients with metastatic or recurrent gastric cancer. Oncologist 2015, 20, 896–897.

122

Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Järvinen, T.; Savolainen, J. Prodrugs: Design and clinical applications. Nat. Rev. Drug Discov. 2008, 7, 255–270.

123

Skwarczynski, M.; Hayashi, Y.; Kiso, Y. Paclitaxel prodrugs: Toward smarter delivery of anticancer agents. J. Med. Chem. 2006, 49, 7253–7269.

124

Terwogt, J. M. M.; ten Bokkel Huinink, W. W.; Schellens, J. H. M.; Schot, M.; Mandjes, I. A. M.; Zurlo, M. G.; Rocchetti, M.; Rosing, H.; Koopman, F. J.; Beijnen, J. H. Phase Ⅰ clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anti-Cancer Drugs 2001, 12, 315–323.

125

Fracasso, P. M.; Picus, J.; Wildi, J. D.; Goodner, S. A.; Creekmore, A. N.; Gao, F.; Govindan, R.; Ellis, M. J.; Tan, B. R.; Linette, G. P. et al. Phase 1 and pharmacokinetic study of weekly docosahexaenoic acid-paclitaxel, Taxoprexin®, in resistant solid tumor malignancies. Cancer Chemother. Pharmacol. 2009, 63, 451–458.

126

Homsi, J.; Bedikian, A. Y.; Papadopoulos, N. E.; Kim, K. B.; Hwu, W. J.; Mahoney, S. L.; Hwu, P. Phase 2 open-label study of weekly docosahexaenoic acid–paclitaxel in patients with metastatic uveal melanoma. Melanoma Res. 2010, 20, 507–510.

127

Jones, R. J.; Hawkins, R. E.; Eatock, M. M.; Ferry, D. R.; Eskens, F. A. L. M.; Wilke, H.; Evans, T. J. J. A phase Ⅱ open-label study of DHA-paclitaxel (Taxoprexin) by 2-h intravenous infusion in previously untreated patients with locally advanced or metastatic gastric or oesophageal adenocarcinoma. Cancer Chemother. Pharmacol. 2008, 61, 435–441.

128

Luo, D. D.; Carter, K. A.; Lovell, J. F. Nanomedical engineering: Shaping future nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 169–188.

129

Adams, M. L.; Lavasanifar, A.; Kwon, G. S. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 2003, 92, 1343–1355.

130

Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjugate Chem. 2010, 21, 797–802.

131

Sutton, D.; Nasongkla, N.; Blanco, E.; Gao, J. M. Functionalized micellar systems for cancer targeted drug delivery. Pharm. Res. 2007, 24, 1029–1046.

132

Gaucher, G.; Dufresne, M. H.; Sant, V. P.; Kang, N.; Maysinger, D.; Leroux, J. C. Block copolymer micelles: Preparation, characterization and application in drug delivery. J. Control. Release 2005, 109, 169–188.

133

Li, J.; Stayshich, R. M.; Meyer, T. Y. Exploiting sequence to control the hydrolysis behavior of biodegradable PLGA copolymers. J. Am. Chem. Soc. 2011, 133, 6910–6913.

134

Makadia, H. K.; Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011, 3, 1377–1397.

135

Kedar, U.; Phutane, P.; Shidhaye, S.; Kadam, V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 714–729.

136

Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B: Biointerfaces 2010, 75, 1–18.

137

Jain, R. A. The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices. Biomaterials 2000, 21, 2475–2490.

138

Esmaeili, F.; Ghahremani, M. H.; Esmaeili, B.; Khoshayand, M. R.; Atyabi, F.; Dinarvand, R. PLGA nanoparticles of different surface properties: Preparation and evaluation of their body distribution. Int. J. Pharm. 2008, 349, 249–255.

139

Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J. F. W.; Hennink, W. E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm. Res. 2010, 27, 2569–2589.

140

Coleman, R. E. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer Res. 2006, 12, 6243s–6249s.

141

Gdowski, A. S.; Ranjan, A.; Sarker, M. R.; Vishwanatha, J. K. Bone-targeted cabazitaxel nanoparticles for metastatic prostate cancer skeletal lesions and pain. Nanomedicine 2017, 12, 2083–2095.

142

Zhang, Z.; Xiong, X. Q.; Wan, J. L.; Xiao, L.; Gan, L.; Feng, Y. M.; Xu, H. B.; Yang, X. L. Cellular uptake and intracellular trafficking of PEG-b-PLA polymeric micelles. Biomaterials 2012, 33, 7233–7240.

143

Han, X. X.; Chen, D.; Sun, J.; Zhou, J. S.; Li, D.; Gong, F. R.; Shen, Y. L. A novel cabazitaxel-loaded polymeric micelle system with superior in vitro stability and long blood circulation time. J. Biomater. Sci., Polym. Ed. 2016, 27, 626–642.

144

Zhuang, B.; Du, L.; Xu, H. X.; Xu, X. L.; Wang, C.; Fan, Y. F.; Cong, M. Y.; Yin, J. Q.; Li, H. X.; Guan, H. S. Self-assembled micelle loading cabazitaxel for therapy of lung cancer. Int. J. Pharm. 2016, 499, 146–155.

145

Mahdaviani, P.; Bahadorikhalili, S.; Navaei-Nigjeh, M.; Vafaei, S. Y.; Esfandyari-Manesh, M.; Abdolghaffari, A. H.; Daman, Z.; Atyabi, F.; Ghahremani, M. H.; Amini, M. et al. Peptide functionalized poly ethylene glycol-poly caprolactone nanomicelles for specific cabazitaxel delivery to metastatic breast cancer cells. Mater. Sci. Eng. C 2017, 80, 301–312.

146

Herold, D. A.; Keil, K.; Bruns, D. E. Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochem. Pharmacol. 1989, 38, 73–76.

147

Garay, R. P.; Labaune, J. P. Immunogenicity of polyethylene glycol (PEG). Open Conf. Proc. J. 2011, 2, 104–107.

148

Cheng, T. L.; Wu, P. Y.; Wu, M. F.; Chern, J. W.; Roffler, S. R. Accelerated clearance of polyethylene glycol-modified proteins by anti-polyethylene glycol IgM. Bioconjugate Chem. 1999, 10, 520–528.

149

Yang, Q.; Wang, K.; Nie, J. J.; Du, B. Y.; Tang, G. P. Poly(N-vinylpyrrolidinone) microgels: Preparation, biocompatibility, and potential application as drug carriers. Biomacromolecules 2014, 15, 2285–2293.

150

Bailly, N.; Thomas, M.; Klumperman, B. Poly(N-vinylpyrrolidone)-block-poly(vinyl acetate) as a drug delivery vehicle for hydrophobic drugs. Biomacromolecules 2012, 13, 4109–4117.

151

Zhu, Z. S.; Li, Y.; Li, X. L.; Li, R. T.; Jia, Z. J.; Liu, B. R.; Guo, W. H.; Wu, W.; Jiang, X. Q. Paclitaxel-loaded poly(N-vinylpyrrolidone)-b-poly(ε-caprolactone) nanoparticles: Preparation and antitumor activity in vivo. J. Control. Release 2010, 142, 438–446.

152

Xie, C.; Zhang, P.; Zhang, Z. K.; Yang, C. C.; Zhang, J. L.; Wu, W.; Jiang, X. Q. Drug-loaded pseudo-block copolymer micelles with a multi-armed star polymer as the micellar exterior. Nanoscale 2015, 7, 12572–12580.

153

Aydin, O.; Youssef, I.; Yuksel Durmaz, Y.; Tiruchinapally, G.; ElSayed, M. E. H. Formulation of acid-sensitive micelles for delivery of cabazitaxel into prostate cancer cells. Mol. Pharm. 2016, 13, 1413–1429.

154

Weiszhár, Z.; Czúcz, J.; Révész, C.; Rosivall, L.; Szebeni, J.; Rozsnyay, Z. Complement activation by polyethoxylated pharmaceutical surfactants: Cremophor-EL, Tween-80 and Tween-20. Eur. J. Pharm. Sci. 2012, 45, 492–498.

155

Zhang, Y. M.; Song, W. T.; Geng, J. M.; Chitgupi, U.; Unsal, H.; Federizon, J.; Rzayev, J.; Sukumaran, D. K.; Alexandridis, P.; Lovell, J. F. Therapeutic surfactant-stripped frozen micelles. Nat. Commun. 2016, 7, 11649.

156

Zhang, Y. M.; Wang, D. P.; Goel, S.; Sun, B. Y.; Chitgupi, U.; Geng, J. M.; Sun, H. Y.; Barnhart, T. E.; Cai, W. B.; Xia, J. et al. Surfactant-stripped frozen pheophytin micelles for multimodal gut imaging. Adv. Mater. 2016, 28, 8524– 8530.

157

Torchilin, V. P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 2007, 24, 1.

158

Shao, Y. J.; Zhang, C. G.; Yao, Q.; Wang, Y. Q.; Tian, B.; Tang, X.; Wang, Y. J. Improving cabazitaxel chemical stability in parenteral lipid emulsions using cholesterol. Eur. J. Pharm. Sci. 2014, 52, 1–11.

159

Ananias, H. J. K.; De Jong, I. J.; Dierckx, R. A.; van de Wiele, C.; Helfrich, W.; Elsinga, P. H. Nuclear imaging of prostate cancer with gastrin-releasing-peptide-receptor targeted radiopharmaceuticals. Curr. Pharm. Des. 2008, 14, 3033–3047.

160

Safavy, A.; Khazaeli, M. B.; Qin, H. Y.; Buchsbaum, D. J. Synthesis of bombesin analogues for radiolabeling with rhenium-188. Cancer 1997, 80, 2354–2359.

161

Kulhari, H.; Pooja, D.; Shrivastava, S.; V.G. M, N.; Sistla, R. Peptide conjugated polymeric nanoparticles as a carrier for targeted delivery of docetaxel. Colloids Surf. B: Biointerfaces 2014, 117, 166–173.

162

Chen, W. J.; Guo, M.; Wang, S. L. Anti prostate cancer using PEGylated bombesin containing, cabazitaxel loading nano-sized drug delivery system. Drug Dev. Ind. Pharm. 2016, 42, 1968–1976.

163

Song, Y.; Tian, Q.; Huang, Z.; Fan, D.; She, Z.; Liu, X.; Cheng, X.; Yu, B.; Deng, Y. Self-assembled micelles of novel amphiphilic copolymer cholesterol-coupled F68 containing cabazitaxel as a drug delivery system. Int. J. Nanomedicine 2014, 9, 2307–2317.

164

Shahgaldian, P.; Da Silva, E.; Coleman, A. W.; Rather, B.; Zaworotko, M. J. Para-acyl-calix-arene based solid lipid nanoparticles (SLNs): A detailed study of preparation and stability parameters. Int. J. Pharm. 2003, 253, 23–38.

165

Qi, J. P.; Lu, Y.; Wu, W. Absorption, disposition and pharmacokinetics of solid lipid nanoparticles. Curr. Drug Metab. 2012, 13, 418–428.

166

Zhu, C. J.; An, C. G. Enhanced antitumor activity of cabazitaxel targeting CD44+ receptor in breast cancer cell line via surface functionalized lipid nanocarriers. Trop. J. Pharm. Res. 2017, 16, 1383–1390.

167

Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 2008, 132, 171–183.

168

Kratz, F. A clinical update of using albumin as a drug vehicle—A commentary. J. Control. Release 2014, 190, 331–336.

169

Qu, N.; Lee, R. J.; Sun, Y.; Cai, G.; Wang, J.; Wang, M.; Lu, J.; Meng, Q.; Teng, L.; Wang, D. et al. Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer. Int. J. Nanomed. 2016, 11, 3451–3459.

170

Qu, N.; Sun, Y. T.; Xie, J.; Teng, L. S. Preparation and evaluation of in vitro self-assembling HSA nanoparticles for cabazitaxel. Anti-Cancer Agents Med. Chem. 2017, 17, 294–300.

171

Huang, H. Y.; Lovell, J. F. Advanced functional nanomaterials for theranostics. Adv. Funct. Mater. 2017, 27, 1603524.

172

Tai, X. W.; Wang, Y.; Zhang, L.; Yang, Y. T.; Shi, K. R.; Ruan, S. B.; Liu, Y. Y.; Gao, H. L.; Zhang, Z. R.; He, Q. Cabazitaxel and indocyanine green co-delivery tumor-targeting nanoparticle for improved antitumor efficacy and minimized drug toxicity. J. Drug Target. 2017, 25, 179–187.

173

Shafirstein, G.; Bäumler, W.; Hennings, L. J.; Siegel, E. R.; Friedman, R.; Moreno, M. A.; Webber, J.; Jackson, C.; Griffin, R. J. Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma. Int. J. Cancer 2012, 130, 1208–1215.

174

Reza, A. T.; Nicoll, S. B. Characterization of novel photocrosslinked carboxymethylcellulose hydrogels for encapsulation of nucleus pulposus cells. Acta Biomater. 2010, 6, 179–186.

175

Toğrul, H.; Arslan, N. Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behaviour of carboxymethyl cellulose. Carbohydr. Polym. 2003, 54, 73–82.

176

Hoang, B.; Ernsting, M. J.; Tang, W. H. S.; Bteich, J.; Undzys, E.; Kiyota, T.; Li, S. D. Cabazitaxel-conjugated nanoparticles for docetaxel-resistant and bone metastatic prostate cancer. Cancer Lett. 2017, 410, 169–179.

177

Ernsting, M. J.; Murakami, M.; Undzys, E.; Aman, A.; Press, B.; Li, S. D. A docetaxel-carboxymethylcellulose nanoparticle outperforms the approved taxane nanoformulation, Abraxane, in mouse tumor models with significant control of metastases. J. Control. Release 2012, 162, 575–581.

178

Ernsting, M. J.; Tang, W. L.; MacCallum, N. W.; Li, S. D. Preclinical pharmacokinetic, biodistribution, and anti-cancer efficacy studies of a docetaxel-carboxymethylcellulose nanoparticle in mouse models. Biomaterials 2012, 33, 1445–1454.

179

Bteich, J.; McManus, S. A.; Ernsting, M. J.; Mohammed, M. Z.; Prud'homme, R. K.; Sokoll, K. K. Using flash nanoprecipitation to produce highly potent and stable cellax nanoparticles from amphiphilic polymers derived from carboxymethyl cellulose, polyethylene glycol, and cabazitaxel. Mol. Pharm. 2017, 14, 3998–4007.

180

Müller, R. H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery—A review of the state of the art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177.

181

Kan, P.; Chen, Z. B.; Lee, C. J.; Chu, I. M. Development of nonionic surfactant/phospholipid o/w emulsion as a paclitaxel delivery system. J. Control. Release 1999, 58, 271–278.

182

Khoeeniha, M. K.; Esfandyari-Manesh, M.; Behrouz, H.; Amini, M.; Varnamkhasti, B. S.; Atyabi, F.; Dinarvand, R. Targeted delivery of cabazitaxel by conjugation to albumin-PEG-folate nanoparticles using a cysteine-acrylate linker and simple synthesis conditions. Curr. Drug Deliv. 2017, 14, 1120–1129.

183

Schacher, F. H.; Rupar, P. A.; Manners, I. Functional block copolymers: Nanostructured materials with emerging applications. Angew. Chem., Int. Ed. 2012, 51, 7898–7921.

184

Gu, F.; Zhang, L. F.; Teply, B. A.; Mann, N.; Wang, A.; Radovic-Moreno, A. F.; Langer, R.; Farokhzad, O. C. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl. Acad. Sci. USA 2008, 105, 2586–2591.

185

Bensaid, F.; Thillaye du Boullay, O.; Amgoune, A.; Pradel, C.; Harivardhan Reddy, L.; Didier, E.; Sablé, S.; Louit, G.; Bazile, D.; Bourissou, D. Y-shaped mPEG-PLA cabazitaxel conjugates: Well-controlled synthesis by organocatalytic approach and self-assembly into interface drug-loaded core–corona nanoparticles. Biomacromolecules 2013, 14, 1189–1198.

186

Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126, 187–204.

187

Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

188

Miranda, D.; Lovell, J. F. Mechanisms of light-induced liposome permeabilization. Bioeng. Transl. Med. 2016, 1, 267–276.

189

Meng, F. H.; Hennink, W. E.; Zhong, Z. Y. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 2009, 30, 2180–2198.

190

Brülisauer, L.; Gauthier, M. A.; Leroux, J. C. Disulfide-containing parenteral delivery systems and their redox-biological fate. J. Control. Release 2014, 195, 147–154.

191

Han, X. X.; Gong, F. R.; Sun, J.; Li, Y. Q.; Liu, X. F.; Chen, D.; Liu, J. W.; Shen, Y. L. Glutathione-responsive core cross-linked micelles for controlled cabazitaxel delivery. J. Nanopart. Res. 2018, 20, 42.

192

Xue, P.; Liu, D.; Wang, J.; Zhang, N.; Zhou, J. H.; Li, L.; Guo, W. L.; Sun, M. C.; Han, X. F.; Wang, Y. J. Redox-sensitive citronellol–cabazitaxel conjugate: Maintained in vitro cytotoxicity and self-assembled as multifunctional nanomedicine. Bioconjugate Chem. 2016, 27, 1360–1372.

193

Engin, K.; Leeper, D. B.; Cater, J. R.; Thistlethwaite, A. J.; Tupchong, L.; McFarlane, J. D. Extracellular pH distribution in human tumours. Int. J. Hyperthermia 1995, 11, 211–216.

194

Van Sluis, R.; Bhujwalla, Z. M.; Raghunand, N.; Ballesteros, P.; Alvarez, J.; Cerdán, S.; Galons, J. P.; Gillies, R. J. In vivo imaging of extracellular pH using 1H MRSI. Magn. Reson. Med. 1999, 41, 743–750.

195

Ojugo, A. S. E.; McSheehy, P. M. J.; McIntyre, D. J. O.; McCoy, C.; Stubbs, M.; Leach, M. O.; Judson, I. R.; Griffiths, J. R. Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy: A comparison of exogenous 19F and 31P probes. NMR Biomed. 1999, 12, 495–504.

196

Parhizkar, E.; Ahmadi, F.; Daneshamouz, S.; Mohammadi-Samani, S.; Sakhteman, A.; Parhizgar, G. Synthesis and characterization of water-soluble conjugates of cabazitaxel hemiesters-dextran. Anticancer Agents Med. Chem. 2017, 17, 1555–1562.

197

Shao, Y. J.; Li, S.; Tian, B.; Su, L. L.; Zhang, C. G.; Wang, Y. Q.; Tang, X.; Wang, Y. Evaluation of the stability and pharmacokinetics of cabazitaxel-loaded intravenous lipid microspheres: Beneficial effect of cholesterol. Eur. J. Lipid Sci. Technol. 2015, 117, 460–470.

198

Zhou, G. M.; Jin, X. Y.; Zhu, P.; Yao, J.; Zhang, Y. X.; Teng, L. S.; Lee, R. J.; Zhang, X. M.; Hong, W. Human serum albumin nanoparticles as a novel delivery system for cabazitaxel. Anticancer Res. 2016, 36, 1649–1656.

Nano Research
Pages 5193-5218
Cite this article:
Sun B, Straubinger RM, Lovell JF. Current taxane formulations and emerging cabazitaxel delivery systems. Nano Research, 2018, 11(10): 5193-5218. https://doi.org/10.1007/s12274-018-2171-0
Part of a topical collection:

719

Views

39

Crossref

N/A

Web of Science

40

Scopus

6

CSCD

Altmetrics

Received: 23 May 2018
Revised: 09 August 2018
Accepted: 10 August 2018
Published: 30 August 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return