Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Photo-controlled release of paclitaxel and model drugs from RNA pyramids

Congcong Xu1Hui Li1Kaiming Zhang2Daniel W. Binzel1Hongran Yin1Wah Chiu2,3Peixuan Guo1()
Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry,College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute,College of Medicine and James Comprehensive Cancer Center,The Ohio State University, Columbus, Ohio,43210,USA;
Departments of Bioengineering,Microbiology and Immunology, and James H. Clark Center,Stanford University,Stanford, CA,94305,USA;
SLAC National Accelerator Laboratory,Stanford University,Menlo Park,CA,94025,USA
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Stimuli-responsive release of drugs from a nanocarrier in spatial-, temporal-, and dosage-controlled fashions is of great interest in the pharmaceutical industry. Paclitaxel is one of the most effective and popular chemotherapeutic drugs against a number of cancers such as metastatic or nonmetastatic breast cancer, non-small cell lung cancer, refractory ovarian cancer, AIDS-related Kaposi's sarcoma, and head and neck cancers. Here, by taking the advantage of RNA nanotechnology in biomedical and material science, we developed a three-dimensional pyramid-shaped RNA nanocage for a photocontrolled release of cargo, using paclitaxel as a model drug. The light-triggered release of paclitaxel or fluorophore Cy5 was achieved by incorporation of photocleavable spacers into the RNA nanoparticles. Upon irradiation with ultraviolet light, cargos were rapidly released (within 5 min). In vitro treatment of breast cancer cells with the RNA nanoparticles harboring photocleavable paclitaxel showed higher cytotoxicity as compared to RNA nanoparticles without the photocleavable spacer. The methodology provides proof of concept for the application of the light-triggered controlled release of drugs from RNA nanocages.

Electronic Supplementary Material

Download File(s)
12274_2018_2174_MOESM1_ESM.pdf (2.7 MB)

References

1

Karimi, M.; Ghasemi, A.; Sahandi, Z. P.; Rahighi, R.; Moosavi Basri, S. M.; Mirshekari, H.; Amiri, M.; Shafaei, P. Z.; Aslani, A.; Bozorgomid, M. et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016, 45, 1457-1501.

2

Hoffman, A. S. Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv. Drug Deliv. Rev. 2013, 65, 10-16.

3

Blum, A. P.; Kammeyer, J. K.; Rush, A. M.; Callmann, C. E.; Hahn, M. E.; Gianneschi, N. C. Stimuli-responsive nanomaterials for biomedical applications. J. Am. Chem. Soc. 2015, 137, 2140-2154.

4

Rahoui, N.; Jiang, B.; Taloub, N.; Huang, Y. D. Spatio-temporal control strategy of drug delivery systems based nano structures. J. Control. Release 2017, 255, 176-201.

5

Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics 2016, 6, 1306-1323.

6

Kahn, J. S.; Hu, Y. W.; Willner, I. Stimuli-responsive DNA-based hydrogels: From basic principles to applications. Acc. Chem. Res. 2017, 50, 680-690.

7

Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991-1003.

8

Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 2014, 13, 813-827.

9

Lin, Z. Q.; Gao, W.; Hu, H. X.; Ma, K.; He, B.; Dai, W. B.; Wang, X. Q.; Wang, J. C.; Zhang, X.; Zhang, Q. Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals: High drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity. J. Control. Release 2014, 174, 161-170.

10

Rapoport, N. Y.; Kennedy, A. M.; Shea, J. E.; Scaife, C. L.; Nam, K. H. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J. Control. Release 2009, 138, 268-276.

11

Alam, M. M.; Han, H. S.; Sung, S.; Kang, J. H.; Sa, K. H.; Al Faruque, H.; Hong, J.; Nam, E. J.; Kim, I. S.; Park, J. H. et al. Endogenous inspired biomineral-installed hyaluronan nanoparticles as pH-responsive carrier of methotrexate for rheumatoid arthritis. J. Control. Release 2017, 252, 62-72.

12

Li, J.; Huo, M. R.; Wang, J.; Zhou, J. P.; Mohammad, J. M.; Zhang, Y. L.; Zhu, Q. N.; Waddad, A. Y.; Zhang, Q. Redox-sensitive micelles self- assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials 2012, 33, 2310-2320.

13

Veetil, A. T.; Chakraborty, K.; Xiao, K.; Minter, M. R.; Sisodia, S. S.; Krishnan, Y. Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules. Nat. Nanotechnol. 2017, 12, 1183-1189.

14

Spring, B. Q.; Bryan, S. R.; Zheng, L. Z.; Mai, Z. M.; Watanabe, R.; Sherwood, M. E.; Schoenfeld, D. A.; Pogue, B. W.; Pereira, S. P.; Villa, E. et al. A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. Nat. Nanotechnol. 2016, 11, 378-387.

15

Karimi, M.; Sahandi, Z. P.; Baghaee-Ravari, S.; Ghazadeh, M.; Mirshekari, H.; Hamblin, M. R. Smart nanostructures for cargo delivery: Uncaging and activating by light. J. Am. Chem. Soc. 2017, 139, 4584-4610.

16

Bansal, A.; Zhang, Y. Photocontrolled nanoparticle delivery systems for biomedical applications. Acc. Chem. Res. 2014, 47, 3052-3060.

17

Wang, Y. Y.; Deng, Y. B.; Luo, H. H.; Zhu, A. J.; Ke, H. T.; Yang, H.; Chen, H. B. Light-responsive nanoparticles for highly efficient cytoplasmic delivery of anticancer agents. ACS Nano 2017, 11, 12134-12144.

18

Shim, G.; Ko, S.; Kim, D.; Le, Q. V.; Park, G. T.; Lee, J.; Kwon, T.; Choi, H. G.; Kim, Y. B.; Oh, Y. K. Light-switchable systems for remotely controlled drug delivery. J. Control. Release 2017, 267, 67-79.

19

Kohman, R. E.; Cha, S. S.; Man, H. Y.; Han, X. Light-triggered release of bioactive molecules from DNA nanostructures. Nano Lett. 2016, 16, 2781-2785.

20

Geng, S. Y.; Wang, Y. Z.; Wang, L. P.; Kouyama, T.; Gotoh, T.; Wada, S.; Wang, J. Y. A light-responsive self-assembly formed by a cationic azobenzene derivative and SDS as a drug delivery system. Sci. Rep. 2017, 7, 39202.

21

Basuki, J. S.; Qie, F. X.; Mulet, X.; Suryadinata, R.; Vashi, A. V.; Peng, Y. Y.; Li, L. L.; Hao, X. J.; Tan, T. W.; Hughes, T. C. Photo-modulated therapeutic protein release from a hydrogel depot using visible light. Angew. Chem., Int. Ed. 2017, 56, 966-971.

22

Lajunen, T.; Nurmi, R.; Kontturi, L.; Viitala, L.; Yliperttula, M.; Murtomaki, L.; Urtti, A. Light activated liposomes: Functionality and prospects in ocular drug delivery. J. Control. Release 2016, 244, 157-166.

23

Sun, W. J.; Jiang, T. Y.; Lu, Y.; Reiff, M.; Mo, R.; Gu, Z. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery. J. Am. Chem. Soc. 2014, 136, 14722-14725.

24

Sun, W. J.; Ji, W. Y.; Hall, J. M.; Hu, Q. Y.; Wang, C.; Beisel, C. L.; Gu, Z. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem., Int. Ed. 2015, 54, 12029-12033.

25

Shu, Y.; Pi, F. M.; Sharma, A.; Rajabi, M.; Haque, F.; Shu, D.; Leggas, M.; Evers, B. M.; Guo, P. X. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv. Drug Deliv. Rev. 2014, 66, 74-89.

26

Jasinski, D.; Haque, F.; Binzel, D. W.; Guo, P. X. Advancement of the emerging field of RNA nanotechnology. ACS Nano 2017, 11, 1142-1164.

27

Li, H.; Lee, T.; Dziubla, T.; Pi, F. M.; Guo, S. J.; Xu, J.; Li, C.; Haque, F.; Liang, X. J.; Guo, P. X. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. Nano Today 2015, 10, 631-655.

28

Shu, Y.; Haque, F.; Shu, D.; Li, W.; Zhu, Z.; Kotb, M.; Lyubchenko, Y.; Guo, P. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. RNA 2013, 19, 767-777.

29

Haque F, Shu D, Shu Y, Shlyakhtenko L, Rychahou P, Evers M, Guo P. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today 2012, 7, 245-257.

30

Shu, D.; Shu, Y.; Haque, F.; Abdelmawla, S.; Guo, P. X. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat. Nanotechnol. 2011, 6, 658-667.

31

Piao, X. J.; Wang, H. Z.; Binzel, D. W.; Guo, P. X. Assessment and comparison of thermal stability of phosphorothioate-DNA, DNA, RNA, 2'-F RNA, and LNA in the context of Phi29 pRNA 3WJ. RNA 2018, 24, 67-76.

32

Binzel, D.; Shu, Y.; Li, H.; Sun, M. Y.; Zhang, Q. S.; Shu, D.; Guo, B.; Guo, P. X. Specific delivery of MiRNA for high efficient inhibition of prostate cancer by RNA nanotechnology. Mol. Ther. 2016, 24, 1267-1277.

33

Binzel, D. W.; Khisamutdinov, E. F.; Guo, P. X. Entropy-driven one-step formation of Phi29 pRNA 3WJ from three RNA fragments. Biochemistry 2014, 53, 2221-2231.

34

Jasinski, D. L.; Khisamutdinov, E. F.; Lyubchenko, Y. L.; Guo, P. X. Physicochemically tunable polyfunctionalized RNA square architecture with fluorogenic and ribozymatic properties. ACS Nano 2014, 8, 7620-7629.

35

Shu, D.; Li, H.; Shu, Y.; Xiong, G. F.; Carson, W. E.; Haque, F.; Xu, R.; Guo, P. X. Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano 2015, 9, 9731-9740.

36

Cui, D. X.; Zhang, C. L.; Liu, B.; Shu, Y.; Du, T.; Shu, D.; Wang, K.; Dai, F. P.; Liu, Y. L.; Li, C. et al. Regression of gastric cancer by systemic injection of RNA nanoparticles carrying both ligand and siRNA. Sci. Rep. 2015, 5, 10726.

37

Khisamutdinov, E. F.; Jasinski, D. L.; Li, H.; Zhang, K. M.; Chiu, W.; Guo, P. X. Fabrication of RNA 3D nanoprisms for loading and protection of small RNAs and model drugs. Adv. Mater. 2016, 28, 10079-10087.

38

Li, H.; Zhang, K. M.; Pi, F. M.; Guo, S. J.; Shlyakhtenko, L.; Chiu, W.; Shu, D.; Guo, P. X. Controllable self-assembly of RNA tetrahedrons with precise shape and size for cancer targeting. Adv. Mater. 2016, 28, 7501-7507.

39

Xu, C. C.; Haque, F.; Jasinski, D. L.; Binzel, D. W.; Shu, D.; Guo, P. X. Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy. Cancer Lett. 2018, 414, 57-70.

40

Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971, 93, 2325-2327.

41

Spencer, C. M.; Faulds, D. Paclitaxel. Drugs 1994, 48, 794-847.

42

Rowinsky, E. K.; Donehower, R. C. Paclitaxel (Taxol). N. Engl. J. Med. 1995, 332, 1004-1014.

43

Horwitz, S. B. Mechanism of action of Taxol. Trends Pharmacol. Sci. 1992, 13, 134-136.

44

Singla, A. K.; Garg, A.; Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm. 2002, 235, 179-192.

45

Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 2001, 37, 1590-1598.

46

Shu Y, Yin H, Rajabi M, Li H, Vieweger M, Guo S, Shu D, Guo P. RNA-based micelles: A novel platform for paclitaxel loading and delivery. J. Control. Release, 2018, 14, 17-29.

47

Kim, S. C.; Kim, D. W.; Shim, Y. H.; Bang, J. S.; Oh, H. S.; Kim, S. W.; Seo, M. H. In vivo evaluation of polymeric micellar paclitaxel formulation: Toxicity and efficacy. J. Control. Release 2001, 72, 191-202.

48

Bedikian, A. Y.; Plager, C.; Papadopoulos, N.; Eton, O.; Ellerhorst, J.; Smith, T. Phase Ⅱ evaluation of paclitaxel by short intravenous infusion in metastatic melanoma. Melanoma Res. 2004, 14, 63-66.

49

Hwu, J. R.; Lin, Y. S.; Josephrajan, T.; Hsu, M. H.; Cheng, F. Y.; Yeh, C. S.; Su, W. C.; Shieh, D. B. Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. J. Am. Chem. Soc. 2009, 131, 66-68.

50

Yoshizawa, Y.; Kono, Y.; Ogawara, K.; Kimura, T.; Higaki, K. PEG liposomalization of paclitaxel improved its in vivo disposition and anti-tumor efficacy. Int. J. Pharm. 2011, 412, 132-141.

51

Hamaguchi, T.; Kato, K.; Yasui, H.; Morizane, C.; Ikeda, M.; Ueno, H.; Muro, K.; Yamada, Y.; Okusaka, T.; Shirao, K. et al. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br. J. Cancer 2007, 97, 170-176.

52

Lay, C. L.; Liu, H. Q.; Tan, H. R.; Liu, Y. Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graftcarbon nanotubes for potent cancer therapeutics. Nanotechnology 2010, 21, 065101.

53

Deng, J. X.; Huang, L.; Liu, F. Understanding the structure and stability of paclitaxel nanocrystals. Int. J. Pharm. 2010, 390, 242-249.

54

Walter, F.; Murchie, A. I.; Lilley, D. M. J. Folding of the four-way RNA junction of the hairpin ribozyme. Biochemistry 1998, 37, 17629-17636.

55

Binzel, D. W.; Khisamutdinov, E.; Vieweger, M.; Ortega, J.; Li, J. Y.; Guo, P. X. Mechanism of three-component collision to produce ultrastable pRNA three-way junction of Phi29 DNA-packaging motor by kinetic assessment. RNA 2016, 22, 1710-1718.

56
Benkato, K.; O'Brien, B.; Bui, M. N.; Jasinski, D. L.; Guo, P. X.; Khisamutdinov, E. F. Evaluation of thermal stability of RNA nanoparticles by temperature gradient gel electrophoresis (TGGE) in native condition. In RNA Nanostructures. Methods in Molecular Biology; Bindewald, E.; Shapiro, B., Eds.; Humana Press: New York, NY, 2017; Vol. 1632, pp 123-133.https://doi.org/10.1007/978-1-4939-7138-1_8
57

Lee, T. J.; Haque, F.; Shu, D.; Yoo, J. Y.; Li, H.; Yokel, R. A.; Horbinski, C.; Kim, T. H.; Kim, S. H.; Kwon, C. H. et al. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model. Oncotarget 2015, 6, 14766-14776.

58

Tiemann, K.; Rossi, J. J. RNAi-based therapeutics—Current status, challenges and prospects. EMBO Mol. Med. 2009, 1, 142-151.

59

Shu, D.; Khisamutdinov, E. F.; Zhang, L.; Guo, P. X. Programmable folding of fusion RNA in vivo and in vitro driven by pRNA 3WJ motif of phi29 DNA packaging motor. Nucleic Acids Res. 2014, 42, e10.

60

Kolpashchikov, D. M. Binary malachite green aptamer for fluorescent detection of nucleic acids. J. Am. Chem. Soc. 2005, 127, 12442-12443.

61

Pothoulakis, G.; Ceroni, F.; Reeve, B.; Ellis, T. The spinach RNA aptamer as a characterization tool for synthetic biology. ACS Synth. Biol. 2014, 3, 182-187.

62

Sassanfar, M.; Szostak, J. W. An RNA motif that binds ATP. Nature 1993, 364, 550-553.

63

Srisawat, C.; Engelke, D. R. Streptavidin aptamers: Affinity tags for the study of RNAs and ribonucleoproteins. RNA 2001, 7, 632-641.

64

Hoeprich, S.; Zhou, Q.; Guo, S.; Qi, G.; Wang, Y.; Guo, P. Bacterial virus Phi29 pRNA as a hammerhead ribozyme escort to destroy hepatitis B virus. Gene Ther. 2003, 10, 1258-1267.

65

Gaplovsky, M.; Il'ichev, Y. V.; Kamdzhilov, Y.; Kombarova, S. V.; Mac, M.; Schwörer, M. A.; Wirz, J. Photochemical reaction mechanisms of 2-nitrobenzyl compounds: 2-Nitrobenzyl alcohols form 2-nitroso hydrates by dual proton transfer. Photochem. Photobiol. Sci. 2005, 4, 33-42.

66
Jasinski, D. L.; Yin, H. R.; Li, Z. F.; Guo, P. X. The hydrophobic effect from conjugated chemicals or drugs on in vivo biodistribution of RNA nanoparticles. Hum. Gene Ther., in press, DOI: 10.1089/hum.2017.054.https://doi.org/10.1089/hum.2017.054
67

Afonin, K. A.; Bindewald, E.; Yaghoubian, A. J.; Voss, N.; Jacovetty, E.; Shapiro, B. A.; Jaeger, L. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat. Nanotechnol. 2010, 5, 676-682.

68

Pi, F.; Binzel, D.; Lee, T. J.; Li, Z.; Sun, M.; Rychahou, P.; Li, H.; Haque, F.; Wang, S.; Croce, C. M. et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat. Nanotechnol. 2018, 13, 8.

Nano Research
Pages 41-48
Cite this article:
Xu C, Li H, Zhang K, et al. Photo-controlled release of paclitaxel and model drugs from RNA pyramids. Nano Research, 2019, 12(1): 41-48. https://doi.org/10.1007/s12274-018-2174-x
Topics:
Metrics & Citations  
Article History
Copyright
Return