AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

pH-sensitive and biodegradable charge-transfer nanocomplex for second near-infrared photoacoustic tumor imaging

Zhimin Wang1Paul Kumar Upputuri2Xu Zhen2Ruochong Zhang3Yuyan Jiang2Xiangzhao Ai1Zhijun Zhang1Ming Hu1Zhenyu Meng1Yunpeng Lu1Yuanjing Zheng3Kanyi Pu2Manojit Pramanik2( )Bengang Xing1 ( )
Division of Chemistry and Biological Chemistry,School of Physical & Mathematical Sciences, Nanyang Technological University,Singapore,637371,Singapore;
School of Chemical and Biomedical Engineering,Nanyang Technological University, 70 Nanyang Drive,Singapore,637459,Singapore;
School of Electrical and Electronic Engineering,Nanyang Technological University, 50 Nanyang Avenue,Singapore,639798,Singapore;
Show Author Information

Graphical Abstract

Abstract

The emerging technique of photoacoustic imaging, especially in the near infra-red (NIR) window, permits high resolution, deep-penetration, clinically reliable sensing. However, few contrast agents are available that can specifically respond to intricate biological environments, and which are biodegradable and biocompatible. Herein, we introduce a new class of pH-sensitive organic photoacoustic contrast agent that operates in the second NIR window (NIR-Ⅱ, 960–1, 700 nm), which is derived from the self-assembled charge-transfer nanocomplex (CTN) by 3, 3', 5, 5'-tetramethylbenzidine (TMB) and its dication structure (TMB++). The unique NIR-Ⅱ-responsive CTN can specifically respond to pH change in the physiological range and allows noninvasive and sensitive visualization of the tumor acidic microenvironment (e.g. at pH 5) in mice with higher signal-to-noise ratio. The CTN is biodegradable under physiological conditions (e.g. pH 7.4), which alleviates the biosafety concern of nanoparticle accumulation in vivo. These results clearly show the potential of the TMB/TMB++-based CTN as a promising pH-activated and biodegradable molecular probe for specific tumor photoacoustic imaging in the NIR-Ⅱ region.

Electronic Supplementary Material

Download File(s)
12274_2018_2175_MOESM1_ESM.pdf (1.4 MB)

References

1

Wang, L. V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458–1462.

2

Kim, C.; Favazza, C.; Wang, L. V. In vivo photoacoustic tomography of chemicals: High-resolution functional and molecular optical imaging at new depths. Chem. Rev. 2010, 110, 2756–2782.

3

Ntziachristos, V. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Methods 2010, 7, 603–614.

4

Upputuri, P. K.; Pramanik, M. Recent advances toward preclinical and clinical translation of photoacoustic tomography: A review. J. Biomed. Opt. 2017, 22, 041006.

5

Ntziachristos, V.; Razansky, D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem. Rev. 2010, 110, 2783–2794.

6

Ai, X. Z.; Ho, C. J. H.; Aw, J.; Attia, A. B. E.; Mu, J.; Wang, Y.; Wang, X. Y.; Wang, Y.; Liu, X. G.; Chen, H. B. et al. In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nat. Commun. 2016, 7, 10432.

7

Wang, L. V.; Yao, J. J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 2016, 13, 627–638.

8

Bozóki, Z.; Pogány, A.; Szabó, G. Photoacoustic instruments for practical applications: Present, potentials, and future challenges. Appl. Spectrosc. Rev. 2011, 46, 1–37.

9

Nie, L. M.; Chen, X. Y. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chem. Soc. Rev. 2014, 43, 7132–7170.

10

Weber, J.; Beard, P. C.; Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13, 639–650.

11

Homan, K.; Kim, S.; Chen, Y.-S.; Wang, B.; Mallidi, S.; Emelianov, S. Prospects of molecular photoacoustic imaging at 1064 nm wavelength. Opt. Lett. 2010, 35, 2663–2665.

12

Homan, K. A.; Souza, M.; Truby, R.; Luke, G. P.; Green, C.; Vreeland, E.; Emelianov, S. Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging. ACS Nano 2012, 6, 641–650.

13

Ku, G.; Zhou, M.; Song, S. L.; Huang, Q.; Hazle, J.; Li, C. Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano 2012, 6, 7489–7496.

14

Zhou, Y.; Wang, D. P.; Zhang, Y. M.; Chitgupi, U.; Geng, J. M.; Wang, Y. H.; Zhang, Y. Z.; Cook, T. R.; Xia, J.; Lovell, J. F. A phosphorus phthalocyanine formulation with intense absorbance at 1000 nm for deep optical imaging. Theranostics 2016, 6, 688–697.

15

Jiang, Y. Y.; Upputuri, P. K.; Xie, C.; Lyu, Y.; Zhang, L. L.; Xiong, Q. H.; Pramanik, M.; Pu, K. Y. Broadband absorbing semiconducting polymer nanoparticles for photoacoustic imaging in second near-infrared window. Nano Lett. 2017, 17, 4964–4969.

16

Zhou, J. J.; Jiang, Y. Y.; Hou, S.; Upputuri, P. K.; Wu, D.; Li, J. C.; Wang, P.; Zhen, X.; Pramanik, M.; Pu, K. Y. et al. Compact plasmonic blackbody for cancer theranosis in the near-infrared Ⅱ window. ACS Nano 2018, 12, 2643–2651.

17

Sun, T. T.; Dou, J.-H.; Liu, S.; Wang, X.; Zheng, X. H.; Wang, Y. P.; Pei, J.; Xie, Z. G. Second near-infrared conjugated polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2018, 10, 7919–7926.

18

Wu, J. Y. Z.; You, L. Y.; Lan, L.; Lee, H. J.; Chaudhry, S. T.; Li, R.; Cheng, J. X.; Mei, J. G. Semiconducting polymer nanoparticles for centimeters-deep photoacoustic imaging in the second near-infrared window. Adv. Mater. 2017, 29, 1703403.

19

Cheng, K.; Chen, H.; Jenkins, C.; Zhang, Z.; Sun, Z. Y.; Fung, J.; Hong, X. C.; Xing, L.; Cheng, Z. Dual-modal NIR-Ⅱ fluorescence and photoacoustic imaging of thyroid carcinoma using EGFR-targeted donor-acceptor chromophore based nanoprobes. J. Nucl. Med. 2016, 57, 556.

20

Cheng, K.; Chen, H.; Jenkins, C. H.; Zhang, G. L.; Zhao, W.; Zhang, Z.; Han, F.; Fung, J.; Yang, M.; Jiang, Y. X. et al. Synthesis, characterization, and biomedical applications of a targeted dual-modal near-infrared-Ⅱ fluorescence and photoacoustic imaging nanoprobe. ACS Nano 2017, 11, 12276–12291.

21

Guo, B.; Sheng, Z. H.; Kenry; Hu, D. H.; Lin, X. W.; Xu, S. D.; Liu, C. B.; Zheng, H. R.; Liu, B. Biocompatible conjugated polymer nanoparticles for highly efficient photoacoustic imaging of orthotopic brain tumors in the second near-infrared window. Mater. Horiz. 2017, 4, 1151–1156.

22

Valluru, K. S.; Willmann, J. K. Clinical photoacoustic imaging of cancer. Ultrasonography 2016, 35, 267–280.

23

Jiang, Y. Y.; Pu, K. Y. Molecular fluorescence and photoacoustic imaging in the second near-infrared optical window using organic contrast agents. Adv. Biosys. 2018, 2, 1700262.

24

Parini, V. P. Organic charge-transfer complexes. Russ. Chem. Rev. 1962, 31, 408–417.

25

Horiuchi, S.; Tokura, Y. Organic ferroelectrics. Nat. Mater. 2008, 7, 357–366.

26

Goetz, K. P.; Vermeulen, D.; Payne, M. E.; Kloc, C.; McNeil, L. E.; Jurchescu, O. D. Charge-transfer complexes: New perspectives on an old class of compounds. J. Mater. Chem. C 2014, 2, 3065–3076.

27

Liu, H. B.; Zhao, Q.; Li, Y. L.; Liu, Y.; Lu, F. S.; Zhuang, J. P.; Wang, S.; Jiang, L.; Zhu, D. B.; Yu, D. P. et al. Field emission properties of large- area nanowires of organic charge-transfer complexes. J. Am. Chem. Soc. 2005, 127, 1120–1121.

28

Liu, Y.; Ji, Z.; Tang, Q.; Jiang, L.; Li, H.; He, M.; Hu, W.; Zhang, D.; Jiang, L.; Wang, X. et al. Particle-size control and patterning of a charge-transfer complex for nanoelectronics. Adv. Mater. 2005, 17, 2953–2957.

29

Qin, Y. K.; Zhang, J.; Zheng, X. Y.; Geng, H.; Zhao, G. Y.; Xu, W.; Hu, W. P.; Shuai, Z. G.; Zhu, D. B. Charge-transfer complex crystal based on extended-π-conjugated acceptor and sulfur-bridged annulene: Charge-transfer interaction and remarkable high ambipolar transport characteristics. Adv. Mater. 2014, 26, 4093–4099.

30

Park, S. K.; Kim, J. H.; Ohto, T.; Yamada, R.; Jones, A. O. F.; Whang, D. R.; Cho, I.; Oh, S.; Hong, S. H.; Kwon, J. E. et al. Highly luminescent 2D-type slab crystals based on a molecular charge-transfer complex as promising organic light-emitting transistor materials. Adv. Mater. 2017, 29, 1701346.

31

Li, Y. J.; Liu, T. F.; Liu, H. B.; Tian, M.-Z.; Li, Y. L. Self-assembly of intramolecular charge-transfer compounds into functional molecular systems. Acc. Chem. Res. 2014, 47, 1186–1198.

32

Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge- transfer states and structures. Chem. Rev. 2003, 103, 3899–4032.

33

Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. Conversion of light to electricity by cis-X2bis(2, 2'-bipyridyl-4, 4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 1993, 115, 6382–6390.

34

Josephy, P. D.; Eling, T.; Mason, R. P. The horseradish peroxidase-catalyzed oxidation of 3, 5, 3', 5'-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J. Biol. Chem. 1982, 257, 3669–3675.

35

Bobrow, M. N.; Litt, G. J.; Shaughnessy, K. J.; Mayer, P. C.; Conlon, J. The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats. J. Immunol. Methods 1992, 150, 145–149.

36

Welch, C. L.; Young, D. S. Spectrophotometry of occult blood in feces. Clin. Chem. 1983, 29, 2022–2025.

37

Awano, H.; Ogata, T.; Murakami, H.; Yamashita, T.; Ohigashi, H. Radical salts as charge-transfer complexes between aromatic diamines and their diiminium cations. Synth. Met. 1990, 36, 263–266.

38

Awano, H.; Ohigashi, H. Absorption spectra of the cationic radical salt of 3, 3', 5, 5'-tetramethylbenzidine in acetonitrile. Bull. Chem. Soc. Jpn. 1990, 63, 2101–2103.

39

Vaupel, P.; Kallinowski, F.; Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res. 1989, 49, 6449–6465.

40

Payen, V. L.; Porporato, P. E.; Baselet, B.; Sonveaux, P. Metabolic changes associated with tumor metastasis, part 1: Tumor pH, glycolysis and the pentose phosphate pathway. Cell. Mol. Life Sci. 2016, 73, 1333–1348.

41

Corbet, C.; Feron, O. Tumour acidosis: From the passenger to the driver's seat. Nat. Rev. Cancer 2017, 17, 577–593.

42

McCarty, M. F.; Whitaker, J. Manipulating tumor acidification as a cancer treatment strategy. Altern. Med. Rev. 2010, 15, 264–272.

43

Ivey, J. W.; Bonakdar, M.; Kanitkar, A.; Davalos, R. V.; Verbridge, S. S. Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor microenvironment. Cancer Lett. 2016, 380, 330–339.

44

Kanamala, M.; Wilson, W. R.; Yang, M. M.; Palmer, B. D.; Wu, Z. M. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 2016, 85, 152–167.

45

Holland, V. R.; Saunders, B. C.; Rose, F. L.; Walpole, A. L. A safer substitute for benzidine in the detection of blood. Tetrahedron 1974, 30, 3299–3302.

46

Chung, K.-T.; Chen, S.-C.; Wong, T. Y.; Li, Y.-S.; Wei, C.-I.; Chou, M. W. Mutagenicity studies of benzidine and its analogs: Structure-activity relationships. Toxicol. Sci. 2000, 56, 351–356.

47

Chung, K.-T.; Chen, S.-C.; Claxton, L. D. Review of the salmonella typhimurium mutagenicity of benzidine, benzidine analogues, and benzidine-based dyes. Mutat. Res. /Rev. Mutat. Res. 2006, 612, 58–76.

48

Yang, J. H.; Wang, H. S.; Zhang, H. J. One-pot synthesis of silver nanoplates and charge-transfer complex nanofibers. J. Phys. Chem. C 2008, 112, 13065–13069.

49
Gwt, M.; Frisch, H.; Schlegel, G.; Scuseria, M.; Robb, J.; Cheeseman, G.; Scalmani, V.; Barone, B.; Mennucci, G.; Petersson, H., et al. Gaussian 09, Revision A. 01; Gaussian Inc.: Wallingford, 2009.
50

Emslie, P. H.; Foster, R. Interaction of electron acceptors with bases part 14: Solvent effect on the optical transition of organic charge-transfer complexes. Recl. Trav. Chim. Pays-Bas 1965, 84, 255–260.

51

Wang, C.; Guo, Y. S.; Wang, Y. P.; Xu, H. P.; Wang, R. J.; Zhang, X. Supramolecular amphiphiles based on a water-soluble charge-transfer complex: Fabrication of ultralong nanofibers with tunable straightness. Angew. Chem., Int. Ed. 2009, 48, 8962–8965.

52

Xia, T.; Li, N.; Nel, A. E. Potential health impact of nanoparticles. Annu. Rev. Public Health 2009, 30, 137–150.

53

Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M. L.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials. Chem. Soc. Rev. 2012, 41, 2323–2343.

54

Chen, Q.; Liang, C.; Sun, X. Q.; Chen, J. W.; Yang, Z. J.; Zhao, H.; Feng, L. Z.; Liu, Z. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. Proc. Natl. Acad. Sci. USA 2017, 114, 5343–5348.

Nano Research
Pages 49-55
Cite this article:
Wang Z, Upputuri PK, Zhen X, et al. pH-sensitive and biodegradable charge-transfer nanocomplex for second near-infrared photoacoustic tumor imaging. Nano Research, 2019, 12(1): 49-55. https://doi.org/10.1007/s12274-018-2175-9
Topics:

1193

Views

77

Crossref

N/A

Web of Science

77

Scopus

3

CSCD

Altmetrics

Received: 12 June 2018
Revised: 12 August 2018
Accepted: 13 August 2018
Published: 29 August 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return