AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Detecting van der Waals forces between a single polymer repeating unit and a solid surface in high vacuum

Wanhao Cai§Chen Xiao§Linmao QianShuxun Cui( )
Key Laboratory of Advanced Technologies of Materials (Ministry of Education),Southwest Jiaotong University,Chengdu,610031,China;

§ Wanhao Cai and Chen Xiao contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Ubiquitous van der Waals (vdW) forces are very important for nanostructures. Although the vdW forces between two surfaces (or two layers) have been measured for several decades, a direct detection at the single-molecule level is still difficult. Herein, we report a novel method to solve this problem in high vacuum by means of AFM-based single-molecule force spectroscopy (SMFS). Solvent molecules and surface adsorbed water are removed thoroughly under high vacuum so that the situation is greatly simplified. A constant force plateau can be observed when a polymer chain is peeled off from a substrate in high vacuum. Accordingly, the vdW forces between one polymer repeating unit and the substrates can be obtained. The experimental results show that the vdW forces (typical range: 21–54 pN) are dependent on the species of substrates and the size of polymer repeating unit, which is in good accordance with the theoretical results. It is expected that this novel method can be applied to detect other non-covalent interactions (such as hydrogen bond and π–π stacking) at the single-molecule level in the future.

Electronic Supplementary Material

Download File(s)
12274_2018_2176_MOESM1_ESM.pdf (2.8 MB)

References

1

van Oss, C. J.; Chaudhury, M. K.; Good, R. J. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 1988, 88, 927–941.

2

Hermann, J.; DiStasio, R. A. Jr.; Tkatchenko, A. First-principles models for van der Waals interactions in molecules and materials: Concepts, theory, and applications. Chem. Rev. 2017, 117, 4714–4758.

3

Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Ky Hirschberg, J. H. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 1997, 278, 1601–1604.

4

Li, I. T. S.; Walker, G. C. Interfacial free energy governs single polystyrene chain collapse in water and aqueous solutions. J. Am. Chem. Soc. 2010, 132, 6530–6540.

5

Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319.

6

Yang, L. L.; Tan, X. X.; Wang, Z. Q.; Zhang, X. Supramolecular polymers: Historical development, preparation, characterization, and functions. Chem. Rev. 2015, 115, 7196–7239.

7

Israelachvili, J.; Min, Y.; Akbulut, M.; Alig, A.; Carver, G.; Greene, W.; Kristiansen, K.; Meyer, E.; Pesika, N.; Rosenberg, K. et al. Recent advances in the surface forces apparatus (SFA) technique. Rep. Prog. Phys. 2010, 73, 036601.

8

Israelachvili, J. N.; Tabor, D. Measurement of van der Waals dispersion forces in the range 1.4 to 130 nm. Nat. Phys. Sci. 1972, 236, 106.

9

Pashley, R. M.; McGuiggan, P. M.; Ninham, B. W.; Evans, D. F. Attractive forces between uncharged hydrophobic surfaces: Direct measurements in aqueous solution. Science 1985, 229, 1088–1089.

10

Burnham, N. A.; Dominguez, D. D.; Mowery, R. L.; Colton, R. J. Probing the surface forces of monolayer films with an atomic-force microscope. Phys. Rev. Lett. 1990, 64, 1931–1934.

11

Butt, H. J. Measuring electrostatic, van der Waals, and hydration forces in electrolyte-solutions with an atomic force microscope. Biophys. J. 1991, 60, 1438–1444.

12

Weisenhorn, A. L.; Maivald, P.; Butt, H. J.; Hansma, P. K. Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys. Rev. B 1992, 45, 11226–11232.

13

Ptak, A.; Gojzewski, H.; Kappl, M.; Butt, H. J. Influence of humidity on the nanoadhesion between a hydrophobic and a hydrophilic surface. Chem. Phys. Lett. 2011, 503, 66–70.

14

Kawai, S.; Foster, A. S.; Björkman, T.; Nowakowska, S.; Bjork, J.; Canova, F. F.; Gade, L. H.; Jung, T. A.; Meyer, E. Van der Waals interactions and the limits of isolated atom models at interfaces. Nat. Commun. 2016, 7, 11559.

15

Wagner, C.; Fournier, N.; Ruiz, V. G.; Li, C.; Müellen, K.; Rohlfing, M.; Tkatchenko, A.; Temirov, R.; Tautz, F. S. Non-additivity of molecule- surface van der Waals potentials from force measurements. Nat. Commun. 2014, 5, 5568.

16

Rief, M.; Oesterhelt, F.; Heymann, B.; Gaub, H. E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 1997, 275, 1295–1297.

17

Li, H. B.; Linke, W. A.; Oberhauser, A. F.; Carrion-Vazquez, M.; Kerkviliet, J. G.; Lu, H.; Marszalek, P. E.; Fernandez, J. M. Reverse engineering of the giant muscle protein titin. Nature 2002, 418, 998–1002.

18

Hinterdorfer, P.; Dufrêne, Y. F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 2006, 3, 347–355.

19

Oesterhelt, F.; Rief, M.; Gaub, H. E. Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water. New J. Phys. 1999, 1, 6.

20

Zou, S.; Schönherr, H.; Vancso, G. J. Stretching and rupturing individual supramolecular polymer chains by afm. Angew. Chem., Int. Ed. 2005, 44, 956–959.

21

Balzer, B. N.; Gallei, M.; Hauf, M. V.; Stallhofer, M.; Wiegleb, L.; Holleitner, A.; Rehahn, M.; Hugel, T. Nanoscale friction mechanisms at solid-liquid interfaces. Angew. Chem., Int. Ed. 2013, 52, 6541–6544.

22

Cheng, B.; Cui, S. Supramolecular chemistry and mechanochemistry of macromolecules: Recent advances by single-molecule force spectroscopy. Top. Curr. Chem. 2015, 369, 97–134.

23

He, C. Z.; Lamour, G.; Xiao, A.; Gsponer, J.; Li, H. B. Mechanically tightening a protein slipknot into a trefoil knot. J. Am. Chem. Soc. 2014, 136, 11946–11955.

24

Roland, J. T.; Guan, Z. B. Synthesis and single-molecule studies of a well- defined biomimetic modular multidomain polymer using a peptidomimetic β-sheet module. J. Am. Chem. Soc. 2004, 126, 14328–14329.

25

Wu, D.; Lenhardt, J. M.; Black, A. L.; Akhremitchev, B. B.; Craig, S. L. Molecular stress relief through a force-induced irreversible extension in polymer contour length. J. Am. Chem. Soc. 2010, 132, 15936–15938.

26

Zhang, Q. M.; Lu, Z. Y.; Hu, H.; Yang, W. T.; Marszalek, P. E. Direct detection of the formation of V-amylose helix by single molecule force spectroscopy. J. Am. Chem. Soc. 2006, 128, 9387–9393.

27

Kang, X.; Cai, W.; Gu, H.; Liu, S.; Cui, S. A Facile and environment- friendly method for fabrication of polymer brush. Chin. J. Polym. Sci. 2017, 35, 857–865.

28

Qian, L.; Bao, Y.; Duan, W.; Cui, S. Effects of water content of the mixed solvent on the single-molecule mechanics of amylose. ACS Macro Lett. 2018, 7, 672–676.

29

Li, Q.; Zhang, T.; Pan, Y. G.; Ciacchi, L. C.; Xu, B. Q.; Wei, G. AFM- based force spectroscopy for bioimaging and biosensing. RSC Adv. 2016, 6, 12893–12912.

30

Ganji, M.; Kim, S. H.; van der Torre, J.; Abbondanzieri, E.; Dekker, C. Intercalation-based single-molecule fluorescence assay to study DNA supercoil dynamics. Nano Lett. 2016, 16, 4699–4707.

31

Bull, M. S.; Sullan, R. M. A.; Li, H. B.; Perkins, T. T. Improved single molecule force spectroscopy using micromachined cantilevers. ACS Nano 2014, 8, 4984–4995.

32

Huang, W. M.; Zhu, Z. S.; Wen, J.; Wang, X.; Qin, M.; Cao, Y.; Ma, H. B.; Wang, W. Single molecule study of force-induced rotation of carbon- carbon double bonds in polymers. ACS Nano 2017, 11, 194–203.

33

Wu, X.; Huang, W. M.; Wu, W. H.; Xue, B.; Xiang, D. F.; Li, Y.; Qin, M.; Sun, F.; Wang, W.; Zhang, W. B. et al. Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res. 2018, 11, 5556–5565.

34

Hollabaugh, C. M.; Chessick, J. J. Adsorption of water and polar paraffinic compounds onto rutile. J. Phys. Chem. 1961, 65, 109–114.

35

Xue, W.; Huglin, M. B.; Jones, T. G. J. Parameters affecting the lower critical solution temperature of linear and crosslinked poly (N-ethylacrylamide) in aqueous media. Macromol. Chem. Phys. 2003, 204, 1956–1965.

36

Xiao, X. D.; Qian, L. M. Investigation of humidity-dependent capillary force. Langmuir 2000, 16, 8153–8158.

37

Xue, Y. R.; Li, X.; Li, H. B.; Zhang, W. K. Quantifying thiol–gold interactions towards the efficient strength control. Nat. Commun. 2014, 5, 4348.

38

Tan, X. X.; Yu, Y.; Liu, K.; Xu, H. P.; Liu, D. S.; Wang, Z. Q.; Zhang, X. Single-molecule force spectroscopy of selenium-containing amphiphilic block copolymer: Toward disassembling the polymer micelles. Langmuir 2012, 28, 9601–9605.

39

Sandal, M.; Valle, F.; Tessari, I.; Mammi, S.; Bergantino, E.; Musiani, F.; Brucale, M.; Bubacco, L.; Samori, B. Conformational equilibria in monomeric α-synuclein at the single-molecule level. PLoS Biol. 2008, 6, e6.

40

Cui, S. X.; Liu, C. J.; Zhang, X. Simple method to isolate single polymer chains for the direct measurement of the desorption force. Nano Lett. 2003, 3, 245–248.

41

Liu, K.; Song, Y.; Feng, W.; Liu, N. N.; Zhang, W. K.; Zhang, X. Extracting a single polyethylene oxide chain from a single crystal by a combination of atomic force microscopy imaging and single-molecule force spectroscopy: Toward the investigation of molecular interactions in their condensed states. J. Am. Chem. Soc. 2011, 133, 3226–3229.

42

Li, J.; Bai, C.; Wang, C.; Zhu, C.; Lin, Z.; Li, Q.; Cao, E. A convenient method of aligning large DNA molecules on bare mica surfaces for atomic force microscopy. Nucleic Acids Res. 1998, 26, 4785–4786.

43

Ma, C. D.; Wang, C. X.; Acevedo-Vélez, C.; Gellman, S. H.; Abbott, N. L. Modulation of hydrophobic interactions by proximally immobilized ions. Nature 2015, 517, 347–350.

44

Böhringer, M.; Morgenstern, K.; Schneider, W. D.; Berndt, R.; Mauri, F.; De Vita, A.; Car, R. Two-dimensional self-assembly of supramolecular clusters and chains. Phys. Rev. Lett. 1999, 83, 324–327.

45

Cui, S. X.; Albrecht, C.; Kühner, F.; Gaub, H. E. Weakly bound water molecules shorten single-stranded DNA. J. Am. Chem. Soc. 2006, 128, 6636–6639.

46

Walder, R.; van Patten, W. J.; Adhikari, A.; Perkins, T. T. Going vertical to improve the accuracy of atomic force microscopy based single-molecule force spectroscopy. ACS Nano 2018, 12, 198–207.

47

Evans, E.; Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 1997, 72, 1541–1555.

48

Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D. Estimates of the ab initio limit for π–π interactions: The benzene dimer. J. Am. Chem. Soc. 2002, 124, 10887–10893.

49

Grabowski, S. J. Hydrogen bonding strength—Measures based on geometric and topological parameters. J. Phys. Org. Chem. 2004, 17, 18–31.

50

Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

51

Anwar, J.; Frenkel, D.; Noro, M. G. Calculation of the melting point of nacl by molecular simulation. J. Chem. Phys. 2003, 118, 728–735.

Nano Research
Pages 57-61
Cite this article:
Cai W, Xiao C, Qian L, et al. Detecting van der Waals forces between a single polymer repeating unit and a solid surface in high vacuum. Nano Research, 2019, 12(1): 57-61. https://doi.org/10.1007/s12274-018-2176-8
Topics:

886

Views

40

Crossref

N/A

Web of Science

44

Scopus

3

CSCD

Altmetrics

Received: 20 July 2018
Revised: 06 August 2018
Accepted: 14 August 2018
Published: 28 August 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return