Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Fundamental understanding of chemistry confined to nanospace remains a challenge since molecules encapsulated in confined microenvironments are difficult to be characterized. Here, we show that CO adsorption on Pt(111) confined under monolayer hexagonal boron nitride (h-BN) can be dynamically imaged using near ambient pressure scanning tunneling microscope (NAP-STM) and thanks to tunneling transparency of the top h-BN layer. The observed CO superstructures on Pt(111) in different CO atmospheres allow to derive surface coverages of CO adlayers, which are higher in the confined nanospace between h-BN and Pt(111) than those on the open Pt surface under the same conditions. Dynamic NAP-STM imaging data together with theoretical calculations confirm confinement-induced molecule enrichment effect within the 2D nanospace, which reveals new chemistry aroused by the confined nanoreactor.
Petrosko, S. H.; Johnson, R.; White, H.; Mirkin, C. A. Nanoreactors: Small spaces, big implications in chemistry. J. Am. Chem. Soc. 2016, 138, 7443-7445.
Koblenz, T. S.; Wassenaar, J.; Reek, J. N. H. Reactivity within a confined self-assembled nanospace. Chem. Soc. Rev. 2008, 37, 247-262.
Fu, Q.; Bao, X. H. Surface chemistry and catalysis confined under two- dimensional materials. Chem. Soc. Rev. 2017, 46, 1842-1874.
Gounder, R.; Iglesia, E. The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chem. Commun. 2013, 49, 3491-3509.
Janda, A.; Vlaisavljevich, B.; Lin, L. C.; Smit, B.; Bell, A. T. Effects of zeolite structural confinement on adsorption thermodynamics and reaction kinetics for monomolecular cracking and dehydrogenation of n-butane. J. Am. Chem. Soc. 2016, 138, 4739-4756.
Sastre, G.; Corma, A. The confinement effect in zeolites. J. Mol. Catal. A Chem. 2009, 305, 3-7.
Miners, S. A.; Rance, G. A.; Khlobystov, A. N. Chemical reactions confined within carbon nanotubes. Chem. Soc. Rev. 2016, 45, 4727-4746.
Pan, X. L.; Bao, X. H. The effects of confinement inside carbon nanotubes on catalysis. ACC. Chem. Res. 2011, 44, 553-562.
Li, H. B.; Xiao, J. P.; Fu, Q.; Bao, X. H. Confined catalysis under two- dimensional materials. Proc. Natl. Acad. Sci. USA 2017, 114, 5930-5934.
Doyle, A. D.; Montoya, J. H.; Vojvodic, A. Improving oxygen electrochemistry through nanoscopic confinement. ChemCatChem 2015, 7, 738-742.
Kovtyukhova, N. I.; Wang, Y. X.; Berkdemir, A.; Cruz-Silva, R.; Terrones, M.; Crespi, V. H.; Mallouk, T. E. Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. Nat. Chem. 2014, 6, 957-963.
Yu, C. G.; He, J. Synergic catalytic effects in confined spaces. Chem. Commun. 2012, 48, 4933-4940.
Ferrighi, L.; Datteo, M.; Fazio, G.; Di Valentin, C. Catalysis under cover: Enhanced reactivity at the interface between (doped) graphene and anatase TiO2. J. Am. Chem. Soc. 2016, 138, 7365-7376.
Prieto, M. J.; Klemm, H. W.; Xiong, F.; Gottlob, D. M.; Menzel, D.; Schmidt, T.; Freund, H. J. Water formation under silica thin films: Real-time observation of a chemical reaction in a physically confined space. Angew. Chem. , Int. Ed. 2018, 57, 8749-8753.
Yang, F.; Deng, D. H.; Pan, X. L.; Fu, Q.; Bao, X. H. Understanding nano effects in catalysis. Natl. Sci. Rev. 2015, 2, 183-201.
Xiao, J. P.; Pan, X. L.; Guo, S. J.; Ren, P. J.; Bao, X. H. Toward fundamentals of confined catalysis in carbon nanotubes. J. Am. Chem. Soc. 2015, 137, 477-482.
Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218-230.
Feng, X. F.; Maier, S.; Salmeron, M. Water splits epitaxial graphene and intercalates. J. Am. Chem. Soc. 2012, 134, 5662-5668.
Yao, Y. X.; Fu, Q.; Zhang, Y. Y.; Weng, X. F.; Li, H.; Chen, M. S.; Jin, L.; Dong, A. Y.; Mu, R. T.; Jiang, P. et al. Graphene cover-promoted metal- catalyzed reactions. Proc. Natl. Acad. Sci. USA 2014, 111, 17023-17028.
Mu, R. T.; Fu, Q.; Jin, L.; Yu, L.; Fang, G. Z.; Tan, D. L.; Bao, X. H. Visualizing chemical reactions confined under graphene. Angew. Chem. , Int. Ed. 2012, 51, 4856-4859.
Zhou, Y. N.; Chen, W.; Cui, P.; Zeng, J.; Lin, Z. N.; Kaxiras, E.; Zhang, Z. Y. Enhancing the hydrogen activation reactivity of nonprecious metal substrates via confined catalysis underneath graphene. Nano Lett. 2016, 16, 6058-6063.
Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover: Tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc. 2010, 132, 8175-8179.
Jiao, F.; Li, J. J.; Pan, X. L.; Xiao, J. P.; Li, H. B.; Ma, H.; Wei, M. M.; Pan, Y.; Zhou, Z. Y.; Li, M. R. et al. Selective conversion of syngas to light olefins. Science 2016, 351, 1065-1068.
Ratnasamy, C.; Wagner, J. P. Water gas shift catalysis. Catal. Rev. 2009, 51, 325-440.
Ding, K. L.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 2015, 350, 189-192.
Zhang, Y. H.; Weng, X. F.; Li, H.; Li, H. B.; Wei, M. M.; Xiao, J. P.; Liu, Z.; Chen, M. S.; Fu, Q.; Bao, X. H. Hexagonal boron nitride cover on Pt(111): A new route to tune molecule-metal interaction and metal-catalyzed reactions. Nano Lett. 2015, 15, 3616-3623.
Wei, M. M.; Fu, Q.; Yang, Y.; Wei, W.; Crumlin, E.; Bluhm, H.; Bao, X. H. Modulation of surface chemistry of Co on NI(111) by surface graphene and carbidic carbon. J. Phys. Chem. C 2015, 119, 13590-13597.
Nilsson, L.; Andersen, M.; Balog, R.; Lægsgaard, E.; Hofmann, P.; Besenbacher, F.; Hammer, B.; Stensgaard, I.; Hornekær, L. Graphene coatings: Probing the limits of the one atom thick protection layer. ACS Nano 2012, 6, 10258-10266.
Grånäs, E.; Andersen, M.; Arman, M. A.; Gerber, T.; Hammer, B.; Schnadt, J.; Andersen, J. N.; Michely, T.; Knudsen, J. CO intercalation of graphene on Ir(111) in the millibar regime. J. Phys. Chem. C 2013, 117, 16438-16447.
Tao, F.; Crozier, P. A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 2016, 116, 3487-3539.
Dou, J.; Sun, Z. C.; Opalade, A. A.; Wang, N.; Fu, W. S.; Tao, F. Operando chemistry of catalyst surfaces during catalysis. Chem. Soc. Rev. 2017, 46, 2001-2027.
Montano, M.; Tang, D. C.; Somorjai, G. A. Scanning tunneling microscopy (STM) at high pressures. Adsorption and catalytic reaction studies on platinum and rhodium single crystal surfaces. Catal. Lett. 2006, 107, 131-141.
Kim, J.; Noh, M. C.; Doh, W. H.; Park, J. Y. In situ observation of competitive Co and O2 adsorption on the Pt(111) surface using near-ambient pressure scanning tunneling microscopy. J. Phys. Chem. C 2018, 122, 6246-6254.
Vang, R. T.; Laegsgaard, E.; Besenbacher, F. Bridging the pressure gap in model systems for heterogeneous catalysis with high-pressure scanning tunneling microscopy. Phys. Chem. Chem. Phys. 2007, 9, 3460-3469.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total- energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.
Zhao, P.; He, Y. R.; Cao, D. B.; Wen, X. D.; Xiang, H. W.; Li, Y. W.; Wang, J. G.; Jiao, H. J. High coverage adsorption and co-adsorption of CO and H2 on Ru(0001) from DFT and thermodynamics. Phys. Chem. Chem. Phys. 2015, 17, 19446-19456.
Brugger, T.; Ma, H. F.; Iannuzzi, M.; Berner, S.; Winkler, A.; Hutter, J.; Osterwalder, J.; Greber, T. Nanotexture switching of single-layer hexagonal boron nitride on rhodium by intercalation of hydrogen atoms. Angew. Chem. , Int. Ed. 2010, 49, 6120-6124.
Sutter, P.; Albrecht, P.; Tong, X.; Sutter, E. Mechanical decoupling of graphene from Ru(0001) by interfacial reaction with oxygen. J. Phys. Chem. C 2013, 117, 6320-6324.
Ng, M. L.; Shavorskiy, A.; Rameshan, C.; Mikkelsen, A.; Lundgren, E.; Preobrajenski, A.; Bluhm, H. Reversible modification of the structural and electronic properties of a boron nitride monolayer by CO intercalation. ChemPhysChem 2015, 16, 923-927.
Dong, A. Y.; Fu, Q.; Wu, H.; Wei, M. M.; Bao, X. H. Factors controlling the CO intercalation of h-BN overlayers on Ru(0001). Phys. Chem. Chem. Phys. 2016, 18, 24278-24284.
Kidambi, P. R.; Blume, R.; Kling, J.; Wagner, J. B.; Baehtz, C.; Weatherup, R. S.; Schloegl, R.; Bayer, B. C.; Hofmann, S. In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper. Chem. Mater. 2014, 26, 6380-6392.
González-Herrero, H.; Pou, P.; Lobo-Checa, J.; Fernández-Torre, D.; Craes, F.; Martínez-Galera, A. J.; Ugeda, M. M.; Corso, M.; Ortega, J. E.; Gómez-Rodríguez, J. M. et al. Graphene tunable transparency to tunneling electrons: A direct tool to measure the local coupling. ACS Nano 2016, 10, 5131-5144.
Rutter, G. M.; Guisinger, N. P.; Crain, J. N.; Jarvis, E. A. A.; Stiles, M. D.; Li, T.; First, P. N.; Stroscio, J. A. Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy. Phys. Rev. B 2007, 76, 235416.
Brar, V. W.; Zhang, Y. B.; Yayon, Y.; Ohta, T.; McChesney, J. L.; Bostwick, A.; Rotenberg, E.; Horn, K.; Crommie, M. F. Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC. Appl. Phys. Lett. 2007, 91, 122102.
Altfeder, I. B.; Chen, D. M.; Matveev, K. A. Imaging buried interfacial lattices with quantized electrons. Phys. Rev. Lett. 1998, 80, 4895-4898.
Longwitz, S. R.; Schnadt, J.; Vestergaard, E. K.; Vang, R. T.; Stensgaard, I.; Brune, H.; Besenbacher, F. High-coverage structures of carbon monoxide adsorbed on Pt(111) studied by high-pressure scanning tunneling microscopy. J. Phys. Chem. B 2004, 108, 14497-14502.
Tao, F.; Dag, S.; Wang, L. -W.; Liu, Z.; Butcher, D. R.; Bluhm, H.; Salmeron, M.; Somorjai, G. A. Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 2010, 327, 850-853.
Jensen, J. A.; Rider, K. B.; Salmeron, M.; Somorjai, G. A. High pressure adsorbate structures studied by scanning tunneling microscopy: CO on Pt(111) in equilibrium with the gas phase. Phys. Rev. Lett. 1998, 80, 1228-1231.
Wakisaka, M.; Yoneyama, T.; Ashizawa, S.; Hyuga, Y.; Ohkanda, T.; Uchida, H.; Watanabe, M. Structural variations of CO adlayers on a Pt(100) electrode in 0.1 M HClO4 solution: An in situ STM study. Phys. Chem. Chem. Phys. 2013, 15, 11038-11047.
Lucas, C. A.; Marković, N. M.; Ross, P. N. The adsorption and oxidation of carbon monoxide at the Pt(111)/electrolyte interface: Atomic structure and surface relaxation. Surf. Sci. 1999, 425, L381-L386.
Yoshimi, K.; Song, M. -B.; Ito, M. Carbon monoxide oxidation on a Pt(111) electrode studied by in-situ IRAS and STM: Coadsorption of CO with water on Pt(111). Surf. Sci. 1996, 368, 389-395.
Turro, N. J.; Wan, P. Photolysis of dibenzyl ketones adsorbed on zeolite molecular sieves. correlation of observed cage effects with carbonyl carbon-13 enrichment efficiencies. J. Am. Chem. Soc. 1985, 107, 678-682.
Zhang, Y. H.; Wang, X. Y.; Shan, W.; Wu, B. Y.; Fan, H. Z.; Yu, X. J.; Tang, Y.; Yang, P. Y. Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis. Angew. Chem. , Int. Ed. 2005, 44, 615-617.
Li, Y. Y.; Perera, S. P.; Crittenden, B. D. Zeolite monoliths for air separation: Part 2: Oxygen enrichment, pressure drop and pressurization. Chem. Eng. Res. Des. 1998, 76, 931-941.
Guan, J.; Pan, X. L.; Liu, X.; Bao, X. H. Syngas segregation induced by confinement in carbon nanotubes: A combined first-principles and monte carlo study. J. Phys. Chem. C 2009, 113, 21687-21692.
Sun, M. M.; Dong, J. C.; Lv, Y.; Zhao, S. Q.; Meng, C. X.; Song, Y. J.; Wang, G. X.; Li, J. F.; Fu, Q.; Tian, Z. Q. et al. Pt@h-BN core-shell fuel cell electrocatalysts with electrocatalysis confined under outer shells. Nano Res. 2018, 11, 3490-3498.
Sun, M. M.; Fu, Q.; Gao, L. J.; Zheng, Y. P.; Li, Y. Y.; Chen, M. S.; Bao, X. H. Catalysis under shell: Improved CO oxidation reaction confined in Pt@h-BN core-shell nanoreactors. Nano Res. 2017, 10, 1403-1412.