AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dynamic nanoscale imaging of enriched CO adlayer on Pt(111) confined under h-BN monolayer in ambient pressure atmospheres

Hao Wu1,2Pengju Ren3,4Peng Zhao4Zhongmiao Gong5Xiaodong Wen3,4Yi Cui5( )Qiang Fu2( )Xinhe Bao1,2
Department of Chemical Physics,University of Science and Technology of China,Hefei,230026,China;
State Key Lab of Catalysis,Dalian Institute of Chemical Physics, Chinese Academy of Sciences,Dalian,116023,China;
National Energy Center for Coal to Clean Fuels,Synfuels China Co., Ltd,Beijing,101400,China;
State Key Laboratory of Coal Conversion,Institute of Coal Chemistry, Chinese Academy of Sciences,Taiyuan,030001,China;
Vacuum Interconnected Nanotech Workstation,Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences,Suzhou,215123,China;
Show Author Information

Graphical Abstract

Abstract

Fundamental understanding of chemistry confined to nanospace remains a challenge since molecules encapsulated in confined microenvironments are difficult to be characterized. Here, we show that CO adsorption on Pt(111) confined under monolayer hexagonal boron nitride (h-BN) can be dynamically imaged using near ambient pressure scanning tunneling microscope (NAP-STM) and thanks to tunneling transparency of the top h-BN layer. The observed CO superstructures on Pt(111) in different CO atmospheres allow to derive surface coverages of CO adlayers, which are higher in the confined nanospace between h-BN and Pt(111) than those on the open Pt surface under the same conditions. Dynamic NAP-STM imaging data together with theoretical calculations confirm confinement-induced molecule enrichment effect within the 2D nanospace, which reveals new chemistry aroused by the confined nanoreactor.

Electronic Supplementary Material

Download File(s)
12274_2018_2184_MOESM1_ESM.pdf (2.3 MB)

References

1

Petrosko, S. H.; Johnson, R.; White, H.; Mirkin, C. A. Nanoreactors: Small spaces, big implications in chemistry. J. Am. Chem. Soc. 2016, 138, 7443-7445.

2

Koblenz, T. S.; Wassenaar, J.; Reek, J. N. H. Reactivity within a confined self-assembled nanospace. Chem. Soc. Rev. 2008, 37, 247-262.

3

Fu, Q.; Bao, X. H. Surface chemistry and catalysis confined under two- dimensional materials. Chem. Soc. Rev. 2017, 46, 1842-1874.

4

Gounder, R.; Iglesia, E. The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chem. Commun. 2013, 49, 3491-3509.

5

Janda, A.; Vlaisavljevich, B.; Lin, L. C.; Smit, B.; Bell, A. T. Effects of zeolite structural confinement on adsorption thermodynamics and reaction kinetics for monomolecular cracking and dehydrogenation of n-butane. J. Am. Chem. Soc. 2016, 138, 4739-4756.

6

Sastre, G.; Corma, A. The confinement effect in zeolites. J. Mol. Catal. A Chem. 2009, 305, 3-7.

7

Miners, S. A.; Rance, G. A.; Khlobystov, A. N. Chemical reactions confined within carbon nanotubes. Chem. Soc. Rev. 2016, 45, 4727-4746.

8

Pan, X. L.; Bao, X. H. The effects of confinement inside carbon nanotubes on catalysis. ACC. Chem. Res. 2011, 44, 553-562.

9

Li, H. B.; Xiao, J. P.; Fu, Q.; Bao, X. H. Confined catalysis under two- dimensional materials. Proc. Natl. Acad. Sci. USA 2017, 114, 5930-5934.

10

Doyle, A. D.; Montoya, J. H.; Vojvodic, A. Improving oxygen electrochemistry through nanoscopic confinement. ChemCatChem 2015, 7, 738-742.

11

Kovtyukhova, N. I.; Wang, Y. X.; Berkdemir, A.; Cruz-Silva, R.; Terrones, M.; Crespi, V. H.; Mallouk, T. E. Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. Nat. Chem. 2014, 6, 957-963.

12

Yu, C. G.; He, J. Synergic catalytic effects in confined spaces. Chem. Commun. 2012, 48, 4933-4940.

13

Ferrighi, L.; Datteo, M.; Fazio, G.; Di Valentin, C. Catalysis under cover: Enhanced reactivity at the interface between (doped) graphene and anatase TiO2. J. Am. Chem. Soc. 2016, 138, 7365-7376.

14

Prieto, M. J.; Klemm, H. W.; Xiong, F.; Gottlob, D. M.; Menzel, D.; Schmidt, T.; Freund, H. J. Water formation under silica thin films: Real-time observation of a chemical reaction in a physically confined space. Angew. Chem. , Int. Ed. 2018, 57, 8749-8753.

15

Yang, F.; Deng, D. H.; Pan, X. L.; Fu, Q.; Bao, X. H. Understanding nano effects in catalysis. Natl. Sci. Rev. 2015, 2, 183-201.

16

Xiao, J. P.; Pan, X. L.; Guo, S. J.; Ren, P. J.; Bao, X. H. Toward fundamentals of confined catalysis in carbon nanotubes. J. Am. Chem. Soc. 2015, 137, 477-482.

17

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218-230.

18

Feng, X. F.; Maier, S.; Salmeron, M. Water splits epitaxial graphene and intercalates. J. Am. Chem. Soc. 2012, 134, 5662-5668.

19

Yao, Y. X.; Fu, Q.; Zhang, Y. Y.; Weng, X. F.; Li, H.; Chen, M. S.; Jin, L.; Dong, A. Y.; Mu, R. T.; Jiang, P. et al. Graphene cover-promoted metal- catalyzed reactions. Proc. Natl. Acad. Sci. USA 2014, 111, 17023-17028.

20

Mu, R. T.; Fu, Q.; Jin, L.; Yu, L.; Fang, G. Z.; Tan, D. L.; Bao, X. H. Visualizing chemical reactions confined under graphene. Angew. Chem. , Int. Ed. 2012, 51, 4856-4859.

21

Zhou, Y. N.; Chen, W.; Cui, P.; Zeng, J.; Lin, Z. N.; Kaxiras, E.; Zhang, Z. Y. Enhancing the hydrogen activation reactivity of nonprecious metal substrates via confined catalysis underneath graphene. Nano Lett. 2016, 16, 6058-6063.

22

Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover: Tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc. 2010, 132, 8175-8179.

23

Jiao, F.; Li, J. J.; Pan, X. L.; Xiao, J. P.; Li, H. B.; Ma, H.; Wei, M. M.; Pan, Y.; Zhou, Z. Y.; Li, M. R. et al. Selective conversion of syngas to light olefins. Science 2016, 351, 1065-1068.

24

Ratnasamy, C.; Wagner, J. P. Water gas shift catalysis. Catal. Rev. 2009, 51, 325-440.

25

Ding, K. L.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 2015, 350, 189-192.

26

Zhang, Y. H.; Weng, X. F.; Li, H.; Li, H. B.; Wei, M. M.; Xiao, J. P.; Liu, Z.; Chen, M. S.; Fu, Q.; Bao, X. H. Hexagonal boron nitride cover on Pt(111): A new route to tune molecule-metal interaction and metal-catalyzed reactions. Nano Lett. 2015, 15, 3616-3623.

27

Wei, M. M.; Fu, Q.; Yang, Y.; Wei, W.; Crumlin, E.; Bluhm, H.; Bao, X. H. Modulation of surface chemistry of Co on NI(111) by surface graphene and carbidic carbon. J. Phys. Chem. C 2015, 119, 13590-13597.

28

Nilsson, L.; Andersen, M.; Balog, R.; Lægsgaard, E.; Hofmann, P.; Besenbacher, F.; Hammer, B.; Stensgaard, I.; Hornekær, L. Graphene coatings: Probing the limits of the one atom thick protection layer. ACS Nano 2012, 6, 10258-10266.

29

Grånäs, E.; Andersen, M.; Arman, M. A.; Gerber, T.; Hammer, B.; Schnadt, J.; Andersen, J. N.; Michely, T.; Knudsen, J. CO intercalation of graphene on Ir(111) in the millibar regime. J. Phys. Chem. C 2013, 117, 16438-16447.

30

Tao, F.; Crozier, P. A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 2016, 116, 3487-3539.

31

Dou, J.; Sun, Z. C.; Opalade, A. A.; Wang, N.; Fu, W. S.; Tao, F. Operando chemistry of catalyst surfaces during catalysis. Chem. Soc. Rev. 2017, 46, 2001-2027.

32

Montano, M.; Tang, D. C.; Somorjai, G. A. Scanning tunneling microscopy (STM) at high pressures. Adsorption and catalytic reaction studies on platinum and rhodium single crystal surfaces. Catal. Lett. 2006, 107, 131-141.

33

Kim, J.; Noh, M. C.; Doh, W. H.; Park, J. Y. In situ observation of competitive Co and O2 adsorption on the Pt(111) surface using near-ambient pressure scanning tunneling microscopy. J. Phys. Chem. C 2018, 122, 6246-6254.

34

Vang, R. T.; Laegsgaard, E.; Besenbacher, F. Bridging the pressure gap in model systems for heterogeneous catalysis with high-pressure scanning tunneling microscopy. Phys. Chem. Chem. Phys. 2007, 9, 3460-3469.

35

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total- energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

36

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

37

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.

38

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.

39

Zhao, P.; He, Y. R.; Cao, D. B.; Wen, X. D.; Xiang, H. W.; Li, Y. W.; Wang, J. G.; Jiao, H. J. High coverage adsorption and co-adsorption of CO and H2 on Ru(0001) from DFT and thermodynamics. Phys. Chem. Chem. Phys. 2015, 17, 19446-19456.

40

Brugger, T.; Ma, H. F.; Iannuzzi, M.; Berner, S.; Winkler, A.; Hutter, J.; Osterwalder, J.; Greber, T. Nanotexture switching of single-layer hexagonal boron nitride on rhodium by intercalation of hydrogen atoms. Angew. Chem. , Int. Ed. 2010, 49, 6120-6124.

41

Sutter, P.; Albrecht, P.; Tong, X.; Sutter, E. Mechanical decoupling of graphene from Ru(0001) by interfacial reaction with oxygen. J. Phys. Chem. C 2013, 117, 6320-6324.

42

Ng, M. L.; Shavorskiy, A.; Rameshan, C.; Mikkelsen, A.; Lundgren, E.; Preobrajenski, A.; Bluhm, H. Reversible modification of the structural and electronic properties of a boron nitride monolayer by CO intercalation. ChemPhysChem 2015, 16, 923-927.

43

Dong, A. Y.; Fu, Q.; Wu, H.; Wei, M. M.; Bao, X. H. Factors controlling the CO intercalation of h-BN overlayers on Ru(0001). Phys. Chem. Chem. Phys. 2016, 18, 24278-24284.

44

Kidambi, P. R.; Blume, R.; Kling, J.; Wagner, J. B.; Baehtz, C.; Weatherup, R. S.; Schloegl, R.; Bayer, B. C.; Hofmann, S. In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper. Chem. Mater. 2014, 26, 6380-6392.

45

González-Herrero, H.; Pou, P.; Lobo-Checa, J.; Fernández-Torre, D.; Craes, F.; Martínez-Galera, A. J.; Ugeda, M. M.; Corso, M.; Ortega, J. E.; Gómez-Rodríguez, J. M. et al. Graphene tunable transparency to tunneling electrons: A direct tool to measure the local coupling. ACS Nano 2016, 10, 5131-5144.

46

Rutter, G. M.; Guisinger, N. P.; Crain, J. N.; Jarvis, E. A. A.; Stiles, M. D.; Li, T.; First, P. N.; Stroscio, J. A. Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy. Phys. Rev. B 2007, 76, 235416.

47

Brar, V. W.; Zhang, Y. B.; Yayon, Y.; Ohta, T.; McChesney, J. L.; Bostwick, A.; Rotenberg, E.; Horn, K.; Crommie, M. F. Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC. Appl. Phys. Lett. 2007, 91, 122102.

48

Altfeder, I. B.; Chen, D. M.; Matveev, K. A. Imaging buried interfacial lattices with quantized electrons. Phys. Rev. Lett. 1998, 80, 4895-4898.

49

Longwitz, S. R.; Schnadt, J.; Vestergaard, E. K.; Vang, R. T.; Stensgaard, I.; Brune, H.; Besenbacher, F. High-coverage structures of carbon monoxide adsorbed on Pt(111) studied by high-pressure scanning tunneling microscopy. J. Phys. Chem. B 2004, 108, 14497-14502.

50

Tao, F.; Dag, S.; Wang, L. -W.; Liu, Z.; Butcher, D. R.; Bluhm, H.; Salmeron, M.; Somorjai, G. A. Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 2010, 327, 850-853.

51

Jensen, J. A.; Rider, K. B.; Salmeron, M.; Somorjai, G. A. High pressure adsorbate structures studied by scanning tunneling microscopy: CO on Pt(111) in equilibrium with the gas phase. Phys. Rev. Lett. 1998, 80, 1228-1231.

52

Wakisaka, M.; Yoneyama, T.; Ashizawa, S.; Hyuga, Y.; Ohkanda, T.; Uchida, H.; Watanabe, M. Structural variations of CO adlayers on a Pt(100) electrode in 0.1 M HClO4 solution: An in situ STM study. Phys. Chem. Chem. Phys. 2013, 15, 11038-11047.

53

Lucas, C. A.; Marković, N. M.; Ross, P. N. The adsorption and oxidation of carbon monoxide at the Pt(111)/electrolyte interface: Atomic structure and surface relaxation. Surf. Sci. 1999, 425, L381-L386.

54

Yoshimi, K.; Song, M. -B.; Ito, M. Carbon monoxide oxidation on a Pt(111) electrode studied by in-situ IRAS and STM: Coadsorption of CO with water on Pt(111). Surf. Sci. 1996, 368, 389-395.

55

Turro, N. J.; Wan, P. Photolysis of dibenzyl ketones adsorbed on zeolite molecular sieves. correlation of observed cage effects with carbonyl carbon-13 enrichment efficiencies. J. Am. Chem. Soc. 1985, 107, 678-682.

56

Zhang, Y. H.; Wang, X. Y.; Shan, W.; Wu, B. Y.; Fan, H. Z.; Yu, X. J.; Tang, Y.; Yang, P. Y. Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis. Angew. Chem. , Int. Ed. 2005, 44, 615-617.

57

Li, Y. Y.; Perera, S. P.; Crittenden, B. D. Zeolite monoliths for air separation: Part 2: Oxygen enrichment, pressure drop and pressurization. Chem. Eng. Res. Des. 1998, 76, 931-941.

58

Guan, J.; Pan, X. L.; Liu, X.; Bao, X. H. Syngas segregation induced by confinement in carbon nanotubes: A combined first-principles and monte carlo study. J. Phys. Chem. C 2009, 113, 21687-21692.

59

Sun, M. M.; Dong, J. C.; Lv, Y.; Zhao, S. Q.; Meng, C. X.; Song, Y. J.; Wang, G. X.; Li, J. F.; Fu, Q.; Tian, Z. Q. et al. Pt@h-BN core-shell fuel cell electrocatalysts with electrocatalysis confined under outer shells. Nano Res. 2018, 11, 3490-3498.

60

Sun, M. M.; Fu, Q.; Gao, L. J.; Zheng, Y. P.; Li, Y. Y.; Chen, M. S.; Bao, X. H. Catalysis under shell: Improved CO oxidation reaction confined in Pt@h-BN core-shell nanoreactors. Nano Res. 2017, 10, 1403-1412.

Nano Research
Pages 85-90
Cite this article:
Wu H, Ren P, Zhao P, et al. Dynamic nanoscale imaging of enriched CO adlayer on Pt(111) confined under h-BN monolayer in ambient pressure atmospheres. Nano Research, 2019, 12(1): 85-90. https://doi.org/10.1007/s12274-018-2184-8
Topics:

756

Views

15

Crossref

N/A

Web of Science

18

Scopus

4

CSCD

Altmetrics

Received: 20 June 2018
Revised: 02 August 2018
Accepted: 20 August 2018
Published: 04 September 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return