AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Large unsaturated room temperature negative magnetoresistance in graphene foam composite for wearable and flexible magnetoelectronics

Rizwan Ur Rehman Sagar1,2,3Massimiliano Galluzzi1,4Alberto García-Peñas1,2Masroor Ahmad Bhat1,2Min Zhang3Florian J. Stadler1( )
College of Materials Science and Engineering,Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University,Shenzhen,518060,China;
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,College of Optoelectronic Engineering, Shenzhen University,Shenzhen,518060,China;
Graduate School at Shenzhen,Tsinghua University,Shenzhen,518055,China;
Shenzhen Key Laboratory of Nanobiomechanics,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,Shenzhen,518055,China;
Show Author Information

Graphical Abstract

Abstract

Room temperature positive magnetoresistance (PMR) in graphene is a conventional phenomenon but we observed large negative magnetoresistance (NMR) in graphene foam (GF)/polydimethylsiloxane (GF/PDMS) at room temperature for the first time. The largest NMR ~ 35% was detected at 250 K, while PMR is observed below 200 K. Furthermore, PMR at all temperatures is observed in regular GF specimens, hence, NMR is the result of the infiltration with the electrically insulating polymer. Forward interference and wavefunction shrinkage model has been employed to understand the transport mechanism in GF/PDMS. A critical temperature ~ 224 K for switching between NMR and PMR is observed at the crystallization temperature of PDMS, suggesting a change in polymer chain conformation may be a major reason leading to NMR in GF/PDMS specimens thus role of mechanical properties of PDMS in NMR cannot be ignored and observed locally via specially resolved atomic force microscopy. In addition, storage modulus and heat flow study shows similar transition temperature (~ 200 K) of NMR to PMR and provide an evidence of mechanical stable specimens. As is known, large, tunable, and unsaturated NMR at room temperature is very useful for future facile practical shapeable magnetoelectronic devices.

Electronic Supplementary Material

Download File(s)
12274_2018_2186_MOESM1_ESM.pdf (1.7 MB)

References

1

Sagar, R. U. R.; Mahmood, N.; Stadler, F. J.; Anwar, T.; Navale, S. T.; Shehzad, K.; Du, B. High capacity retention anode material for lithium ion battery. Electrochim. Acta 2016, 211, 156-163.

2

Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424-428.

3

Ma, Y. F.; Chen, Y. S. Three-dimensional graphene networks: Synthesis, properties and applications. Nat. Sci. Rev. 2015, 2, 40-53.

4

Krueger, E.; Chang, A. N.; Brown, D.; Eixenberger, J.; Brown, R.; Rastegar, S.; Yocham, K. M.; Cantley, K. D.; Estrada, D. Graphene foam as a three-dimensional platform for myotube growth. ACS Biomater. Sci. Eng. 2016, 2, 1234-1241.

5

Anwar, T.; Li, W.; Hussain, N.; Wang, C.; Sagar, R. U. R.; Liang, T. X. Effect of annealing atmosphere induced crystallite size changes on the electrochemical properties of TiO2 nanotubes arrays. J. Elec. Eng. 2016, 4, 43-51.

6

Anwar, T.; Li, W.; Liang, T. X.; He, X. M.; Sagar, R. U. R.; Shehzad, K. Effect of aspect ratio of titanium dioxide nanotube arrays on the performance of lithium ion battery. Int. J. Electrochem. Sci. 2015, 10, 6537-6547.

7

Anwar, T.; Li, W.; Li, J. Y.; Wang, C.; Sagar, R. U. R.; Liang, T. X. Lithium storage study on MoO3-grafted TiO2 nanotube arrays. Appl. Nano. 2016, 6, 1149-1157.

8

Shehzad, K.; Xu, Y.; Gao, C.; Duan, X. F. Three-dimensional macro- structures of two-dimensional nanomaterials. Chem. Soc. Rev. 2016, 45, 5541-5588.

9

Jayanthi, S.; Mukherjee, A.; Chatterjee, K.; Sood, A. K.; Misra, A. Tailored nitrogen dioxide sensing response of three-dimensional graphene foam. Sens. Actuators B: Chem. 2016, 222, 21-27.

10

Makarov, D.; Melzer, M.; Karnaushenko, D.; Schmidt, O. G. Shapeable magnetoelectronics. Appl. Phys. Rev. 2016, 3, 011101.

11

Mao, J. H.; Jiang, Y. H.; Moldovan, D.; Li, G. H.; Watanabe, K.; Taniguchi, T.; Masir, M. R.; Peeters, F. M.; Andrei, E. Y. Realization of a tunable artificial atom at a supercritically charged vacancy in graphene. Nat. Phys. 2016, 12, 545-549.

12

Li, P.; Zhang, Q.; He, X.; Ren, W. C.; Cheng, H. M.; Zhang, X. X. Spatial mobility fluctuation induced giant linear magnetoresistance in multilayered graphene foam. Phys. Rev. B 2016, 94, 045402.

13

Jun, Y. S.; Sy, S.; Ahn, W.; Zarrin, H.; Rasen, L.; Tjandra, R.; Amoli, B. M.; Zhao, B. X.; Chiu, G.; Yu, A. P. Highly conductive interconnected graphene foam based polymer composite. Carbon 2015, 95, 653-658.

14

Galluzzi, M.; Biswas, C. S.; Wu, Y. H.; Wang, Q.; Du, B.; Stadler, F. J. Space-resolved quantitative mechanical measurements of soft and supersoft materials by atomic force microscopy. NPG Asia Mater. 2016, 8, e327.

15

Shehzad, K.; Shi, T. J.; Qadir, A.; Wan, X.; Guo, H. W.; Ali, A.; Xuan, W. P.; Xu, H.; Gu, Z. Z.; Peng, X. S. et al. Designing an efficient multimode environmental sensor based on graphene-silicon heterojunction. Adv. Mater. Technol. 2017, 2, 1600262.

16

Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273-291.

17

Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H. Y.; Shin, H. S.; Chhowalla, M. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 2016, 353, 1413-1416.

18

Sagar, R. U. R.; Galluzzi, M.; Wan, C. H.; Shehzad, K.; Navale, S. T.; Anwar, T.; Mane, R. S.; Piao, H. G.; Ali, A.; Stadler, F. J. Large, linear, and tunable positive magnetoresistance of mechanically stable graphene foam-toward high-performance magnetic field sensors. ACS Appl. Mater. Interfaces 2017, 9, 1891-1898.

19

Saleemi, A. S.; Sagar, R. U. R.; Singh, R.; Luo, Z. C.; Zhang, X. Z. Angle dependent magnetotransport in transfer-free amorphous carbon thin films. J. Phys. D: Appl. Phys. 2016, 49, 415005.

20

Sagar, R. U. R.; Saleemi, A. S.; Zhang, X. Z. Angular magnetoresistance in semiconducting undoped amorphous carbon thin films. J. Appl. Phys. 2015, 117, 174503.

21

Sagar, R. U. R.; Zhang, X. Z.; Wang, J. M.; Xiong, C. Y. Negative magnetoresistance in undoped semiconducting amorphous carbon films. J. Appl. Phys. 2014, 115, 123708.

22

Sagar, R. U. R.; Saleemi, A. S.; Shehzad, K.; Navale, S. T.; Mane, R. S.; Stadler, F. J. Non-magnetic thin films for magnetic field position sensor. Sens. Actuators A: Phys. 2017, 254, 89-94.

23

Sagar, R. U. R.; Zhang, X. Z.; Xiong, C. Y.; Yu, Y. Semiconducting amorphous carbon thin films for transparent conducting electrodes. Carbon 2014, 76, 64-70.

24

Liao, Z. M.; Wu, H. C.; Kumar, S.; Duesberg, G. S.; Zhou, Y. B.; Cross, G. L.W.; Shvets, I. V.; Yu, D. P. Large magnetoresistance in few layer graphene stacks with current perpendicular to plane geometry. Adv. Mater. 2012, 24, 1862-1866.

25

Bodepudi, S. C.; Singh, A. P.; Pramanik, S. Giant current-perpendicular- to-plane magnetoresistance in multilayer graphene as grown on nickel. Nano Lett. 2014, 14, 2233-2241.

26

Kempa, H.; Esquinazi, P.; Kopelevich, Y. Field-induced metal-insulator transition in the c-axis resistivity of graphite. Phys. Rev. B 2002, 65, 241101.

27

Li, B.; Xing, T.; Zhong, M. Z.; Huang, L.; Lei, N.; Zhang, J.; Li, J. B.; Wei, Z. M. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 2017, 8, 1958.

28

Quivy, A.; Deltour, R.; Jansen, A. G. M.; Wyder, P. Transport phenomena in polymer-graphite composite materials. Phys. Rev. B 1989, 39, 1026-1030.

29

Liang, S. H.; Yang, H. W.; Renucci, P.; Tao, B. S.; Laczkowski, P.; Mc-Murtry, S.; Wang, G.; Marie, X.; George, J. M.; Petit-Watelot, S. et al. Electrical spin injection and detection in molybdenum disulfide multilayer channel. Nat. Commun. 2017, 8, 14947.

30

Bloom, F. L.; Wagemans, W.; Kemerink, M.; Koopmans, B. Separating positive and negative magnetoresistance in organic semiconductor devices. Phys. Rev. Lett. 2007, 99, 257201.

31

Gu, H. B.; Guo, J.; Sadu, R.; Huang, Y. D.; Haldolaarachchige, N.; Chen, D. L.; Young, D. P.; Wei, S. Y.; Guo, Z. H. Separating positive and negative magnetoresistance for polyaniline-silicon nanocomposites in variable range hopping regime. Appl. Phys. Lett. 2013, 102, 212403.

32

Wang, J. M.; Zhang, X. Z.; Wan, C. H.; Vanacken, J.; Moshchalkov, V. V. Magnetotransport properties of undoped amorphous carbon films. Carbon 2013, 59, 278-282.

33

Zhou, Y. B.; Han, B. H.; Liao, Z. M.; Wu, H. C.; Yu, D. P. From positive to negative magnetoresistance in graphene with increasing disorder. Appl. Phys. Lett. 2011, 98, 222502.

34

Son, M.; Pak, Y.; Chee, S. S.; Auxilia, F. M.; Kim, K.; Lee, B. K.; Lee, S.; Kang, S. K.; Lee, C.; Lee, J. S. et al. Charge transfer in graphene/polymer interfaces for CO2 detection. Nano Res. 2018, 11, 3529-3536.

35

Zhu, F.; Lin, X. Y.; Liu, P.; Jiang, K. L.; Wei, Y.; Wu, Y.; Wang, J. P.; Fan, S. S. Heating graphene to incandescence and the measurement of its work function by the thermionic emission method. Nano Res. 2014, 7, 553-560.

36

Lee, J. U.; Yoon, D.; Cheong, H. Estimation of Young's modulus of graphene by Raman spectroscopy. Nano Lett. 2012, 12, 4444-4448.

37

Politano, A.; Chiarello, G. Probing the Young's modulus and Poisson's ratio in graphene/metal interfaces and graphite: A comparative study. Nano Res. 2015, 8, 1847-1856.

38

Levy, N.; Burke, S. A.; Meaker, K. L.; Panlasigui, M.; Zettl, A.; Guinea, F.; Neto, A. H. C.; Crommie, M. F. Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 2010, 329, 544-547.

39

Low, T.; Guinea, F. Strain-induced pseudomagnetic field for novel graphene electronics. Nano Lett. 2010, 10, 3551-3554.

40

Kim, K.; Lee, Z.; Malon, B. D.; Chan, K. T.; Alemán, B.; Regan, W.; Gannett, W.; Crommie, M. F.; Cohen, M. L.; Zettl, A. Multiply folded graphene. Phys. Rev. B 2011, 83, 245433.

Nano Research
Pages 101-107
Cite this article:
Sagar RUR, Galluzzi M, García-Peñas A, et al. Large unsaturated room temperature negative magnetoresistance in graphene foam composite for wearable and flexible magnetoelectronics. Nano Research, 2019, 12(1): 101-107. https://doi.org/10.1007/s12274-018-2186-6
Topics:

931

Views

19

Crossref

N/A

Web of Science

21

Scopus

0

CSCD

Altmetrics

Received: 04 January 2018
Revised: 23 August 2018
Accepted: 24 August 2018
Published: 11 September 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return