AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Strong dual-crosslinked hydrogels for ultrasound-triggered drug delivery

Wenxu Sun1,§Heting Jiang1,§Xin Wu1,§Zhengyu Xu1Chen Yao2,3Juan Wang1Meng Qin1Qing Jiang2,3Wei Wang1( )Dongquan Shi2,3( )Yi Cao1( )
Collaborative Innovation Center of Advanced Microstructures,National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University,Nanjing,210093,China;
Department of Sports Medicine and Adult Reconstructive surgery,Drum Tower Hospital; Medical School, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University,Nanjing,210008,China;
Joint Research Center for Bone and Joint Disease,Model Animal Research Center (MARC), School of Chemistry and Chemical Engineering, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University,Nanjing,210093,China;

§ Wenxu Sun, Heting Jiang, and Xin Wu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Hydrogels that can respond to dynamic forces either from endogenous biological activities or from external mechanical stimuli show great promise as novel drug delivery systems (DDS). However, it remains challenging to engineer hydrogels that specifically respond to externally applied mechanical forces with minimal basal drug leakage under normal stressful physiological conditions. Here we present an ultrasound responsive hydrogel-based DDS with special dual-crosslinked nanoscale network architecture. The covalent crosslinks endow the hydrogel high mechanical stability and greatly suppress deformation-triggered drug release. Meanwhile, the dynamic covalent boronate ester linkages between hydrogel backbone and the anti-inflammation compound, tannic acid (TA), allow effective ultrasound-triggered pulsatile release of TA. As such, the hydrogel shows distinct drug release profiles under compression and ultrasound. A proof-of-principle demonstration of the suppression of inflammation activation of macrophage upon ultrasound-triggered release of TA was also illustrated. We anticipate that this novel hydrogel-based drug delivery system can be used for the treatment of inflammatory diseases on load-bearing tissues, such as muscle and cartilage.

Electronic Supplementary Material

Download File(s)
12274_2018_2188_MOESM1_ESM.pdf (1.9 MB)

References

1

Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2016, 2, 16075.

2

Drury, J. L.; Mooney, D. J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003, 24, 4337-4351.

3

Wang, H. Y.; Heilshorn, S. C. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv. Mater. 2015, 27, 3717-3736.

4

Slaughter, B. V.; Khurshid, S. S.; Fisher, O. Z.; Khademhosseini, A.; Peppas, N. A. Hydrogels in regenerative medicine. Adv. Mater. 2009, 21, 3307-3329.

5

Jayakumar, R.; Prabaharan, M.; Sudheesh Kumar, P. T.; Nair, S. V.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29, 322-337.

6

Koehler, J.; Brandl, F. P.; Goepferich, A. M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur. Polym. J. 2018, 100, 1-11.

7

Xue, B.; Qin, M.; Wang, T. K.; Wu, J. H.; Luo, D. J.; Jiang, Q.; Li, Y.; Cao, Y.; Wang, W. Electrically controllable actuators based on supramolecular peptide hydrogels. Adv. Funct. Mater. 2016, 26, 9053-9062.

8

Pei, Z. Q.; Yang, Y.; Chen, Q. M.; Terentjev, E. M.; Wei, Y.; Ji, Y. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 2014, 13, 36-41.

9

Fratzl, P.; Barth, F. G. Biomaterial systems for mechanosensing and actuation. Nature 2009, 462, 442-448.

10

Li, J. Y.; Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071.

11

Zhang, S. F.; Ermann, J.; Succi, M. D.; Zhou, A.; Hamilton, M. J.; Cao, B.; Korzenik, J. R.; Glickman, J. N.; Vemula, P. K.; Glimcher, L. H. et al. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci. Transl. Med. 2015, 7, 300ra128.

12

Zhang, X. L.; Dong, C. M.; Huang, W. Y.; Wang, H. M.; Wang, L.; Ding, D.; Zhou, H.; Long, J. F.; Wang, T. L.; Yang, Z. M. Rational design of a photo-responsive UVR8-derived protein and a self-assembling peptide- protein conjugate for responsive hydrogel formation. Nanoscale 2015, 7, 16666-16670.

13

Zhang, Y. Q.; Yu, J. C.; Bomba, H. N.; Zhu, Y.; Gu, Z. Mechanical force- triggered drug delivery. Chem. Rev. 2016, 116, 12536-12563.

14

Sverdlova, N. S.; Witzel, U. Principles of determination and verification of muscle forces in the human musculoskeletal system: Muscle forces to minimise bending stress. J. Biomech. 2010, 43, 387-396.

15

Mansour, J. M. Biomechanics of cartilage. In Kinesiology: The Mechanics and Pathomechanics of Human Movement; Oatis, C. A., Ed.; Wolter Kluwer: Philadelphia, 2003; pp 66-79.

16

Zamir, M. Shear forces and blood vessel radii in the cardiovascular system. J. Gen. Physiol. 1977, 69, 449-461.

17

Barnes, L. A.; Marshall, C. D.; Leavitt, T.; Hu, M. S.; Moore, A. L.; Gonzalez, J. G.; Longaker, M. T.; Gurtner, G. C. Mechanical forces in cutaneous wound healing: Emerging therapies to minimize scar formation. Adv. Wound Care 2018, 7, 47-56.

18

Lee, K. Y.; Peters, M. C.; Anderson, K. W.; Mooney, D. J. Controlled growth factor release from synthetic extracellular matrices. Nature 2000, 408, 998-1000.

19

Van Der Schaft, D. W. J.; Van Spreeuwel, A. C. C.; Van Assen, H. C.; Baaijens, F. P. T. Mechanoregulation of vascularization in aligned tissue- engineered muscle: A role for vascular endothelial growth factor. Tissue Eng. Part A 2011, 17, 2857-2865.

20

Holme, M. N.; Fedotenko, I. A.; Abegg, D.; Althaus, J.; Babel, L.; Favarger, F.; Reiter, R.; Tanasescu, R.; Zaffalon, P. L.; Ziegler, A. et al. Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat. Nanotechnol. 2012, 7, 536-543.

21

Korin, N.; Kanapathipillai, M.; Matthews, B. D.; Crescente, M.; Brill, A.; Mammoto, T.; Ghosh, K.; Jurek, S.; Bencherif, S. A.; Bhatta, D. et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 2012, 337, 738-742.

22

Lu, Y.; Hu, Q. Y.; Lin, Y. L.; Pacardo, D. B.; Wang, C.; Sun, W. J.; Ligler, F. S.; Dickey, M. D.; Gu, Z. Transformable liquid-metal nanomedicine. Nat. Commun. 2015, 6, 10066.

23

Di, J.; Yu, J. C.; Wang, Q.; Yao, S. S.; Suo, D. J.; Ye, Y. Q.; Pless, M.; Zhu, Y.; Jing, Y.; Gu, Z. Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Res. 2017, 10, 1393-1402.

24

Ye, Y. Q.; Wang, J. Q.; Hu, Q. Y.; Hochu, G. M.; Xin, H. L.; Wang, C.; Gu, Z. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano 2016, 10, 8956-8963.

25

Wang, C.; Sun, W. J.; Wright, G.; Wang, A. Z.; Gu, Z. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Adv. Mater. 2016, 28, 8912-8920.

26

Hu, Q. Y.; Qian, C. G.; Sun, W. J.; Wang, J. Q.; Chen, Z. W.; Bomba, H. N.; Xin, H. L.; Shen, Q. D.; Gu, Z. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv. Mater. 2016, 28, 9573-9580.

27

Sirsi, S. R.; Borden, M. A. State-of-the-art materials for ultrasound- triggered drug delivery. Adv. Drug. Deliv. Rev. 2014, 72, 3-14.

28

Di, J.; Price, J.; Gu, X.; Jiang, X. N.; Jing, Y.; Gu, Z. Ultrasound-triggered regulation of blood glucose levels using injectable nano-network. Adv. Healthc. Mater. 2014, 3, 811-816.

29

Huebsch, N.; Kearney, C. J.; Zhao, X. H.; Kim, J.; Cezar, C. A.; Suo, Z. G.; Mooney, D. J. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl. Acad. Sci. USA 2014, 111, 9762-9767.

30

Wang, J. L.; Kaplan, J. A.; Colson, Y. L.; Grinstaff, M. W. Mechanoresponsive materials for drug delivery: Harnessing forces for controlled release. Adv. Drug. Deliv. Rev. 2017, 108, 68-82.

31

Thévenot, J.; Oliveira, H.; Sandre, O.; Lecommandoux, S. Magnetic responsive polymer composite materials. Chem. Soc. Rev. 2013, 42, 7099-7116.

32

Dai, Q.; Nelson, A. Magnetically-responsive self assembled composites. Chem. Soc. Rev 2010, 39, 4057-4066.

33

Yu, J. C.; Zhang, Y. Q.; Sun, W. J.; Wang, C.; Ranson, D.; Ye, Y. Q.; Weng, Y. Y.; Gu, Z. Internalized compartments encapsulated nanogels for targeted drug delivery. Nanoscale 2016, 8, 9178-9184.

34

Lu, Y.; Sun, W. J.; Gu, Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. J. Control. Release 2014, 194, 1-19.

35

Hu, Q. Y.; Katti, P. S.; Gu, Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 2014, 6, 12273-12286.

36

Mayumi, K.; Marcellan, A.; Ducouret, G.; Creton, C.; Narita, T. Stress- strain relationship of highly stretchable dual cross-link gels: Separability of strain and time effect. ACS Macro Lett. 2013, 2, 1065-1068.

37

Kampa M.; Nifli, A. P.; Notas G.; Castanas E. Polyphenols and cancer cell growth. In Reviews of Physiology, Biochemistry and Pharmacology; Amara, S.; Bamberg, E.; Fleischmann, B.; Gudermann, T.; Hebert, S. C.; Jahn, R.; Lederer, W. J.; Lill, R.; Miyajima, A.; Offermanns, S. et al., Eds.; Springer: Berlin, Heidelberg, 2007.

38

Shukla, M.; Gupta, K.; Rasheed, Z.; Khan, K. A.; Haqqi, T. M. Consumption of hydrolyzable tannins-rich pomegranate extract suppresses inflammation and joint damage in rheumatoid arthritis. Nutrition 2008, 24, 733-743.

39

Rasheed, Z.; Anbazhagan, A. N.; Akhtar, N.; Ramamurthy, S.; Voss, F. R.; Haqqi, T. M. Green tea polyphenol epigallocatechin-3-gallate inhibits advanced glycation end product-induced expression of tumor necrosis factor-α and matrix metalloproteinase-13 in human chondrocytes. Arthritis Res. Ther. 2009, 11, R71.

40

Yesilyurt, V.; Webber, M. J.; Appel, E. A.; Godwin, C.; Langer, R.; Anderson, D. G. Injectable self-healing glucose-responsive hydrogels with pH-regulated mechanical properties. Adv. Mater. 2016, 28, 86-91.

41

Dong, Y. Z.; Wang, W. H.; Veiseh, O.; Appel, E. A.; Xue, K.; Webber, M. J.; Tang, B. C.; Yang, X. W.; Weir, G. C.; Langer, R. et al. Injectable and glucose-responsive hydrogels based on boronic acid-glucose complexation. Langmuir 2016, 32, 8743-8747.

42

Bapat, A. P.; Roy, D.; Ray, J. G.; Savin, D. A.; Sumerlin, B. S. Dynamic- covalent macromolecular stars with boronic ester linkages. J. Am. Chem. Soc. 2011, 133, 19832-19838.

43

Cromwell, O. R.; Chung, J.; Guan, Z. B. Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds. J. Am. Chem. Soc. 2015, 137, 6492-6495.

44

He, L. H.; Fullenkamp, D. E.; Rivera, J. G.; Messersmith, P. B. pH responsive self-healing hydrogels formed by boronate-catechol complexation. Chem. Commun. 2011, 47, 7497-7499.

45

Leslie, K. O.; Trahan, S.; Gruden, J. Pulmonary pathology of the rheumatic diseases. Semin. Resp. Crit. Care 2007, 28, 369-378.

Nano Research
Pages 115-119
Cite this article:
Sun W, Jiang H, Wu X, et al. Strong dual-crosslinked hydrogels for ultrasound-triggered drug delivery. Nano Research, 2019, 12(1): 115-119. https://doi.org/10.1007/s12274-018-2188-4
Topics:

1105

Views

61

Crossref

N/A

Web of Science

62

Scopus

3

CSCD

Altmetrics

Received: 01 August 2018
Revised: 18 August 2018
Accepted: 23 August 2018
Published: 06 September 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return